
Draft Technical Report
Research Project Agreement No. T9903, Task 84

Fuzzy Ramp Implementation

A PROGRAMMER’S GUIDE TO
THE FUZZY LOGIC RAMP METERING ALGORITHM:

SOFTWARE DESIGN, INTEGRATION, TESTING, AND EVALUATION

by

Cynthia Taylor Deirdre Meldrum
Research Engineer Associate Professor

Department of Electrical Engineering
University of Washington

Seattle, Washington 98195

Washington State Transportation Center (TRAC)
University of Washington, Box 354802

University District Building
1107 NE 45th Street, Suite 535

Seattle, Washington 98105-4631

Washington State Department of Transportation
Technical Monitor
Dave McCormick

Traffic Systems Manager, Northwest Region

Prepared for

Washington State Transportation Commission
Department of Transportation

and in cooperation with
U.S. Department of Transportation

Federal Highway Administration

February 2000

TECHNICAL REPORT STANDARD TITLE PAGE
1. REPORT NO. 2. GOVERNMENT ACCESSION NO. 3. RECIPIENT'S CATALOG NO.

WA-RD 481.3

4. TITLE AND SUBTITLE 5. REPORT DATE

A Programmer’s Guide to the Fuzzy Logic Ramp Metering February 2000
Algorithm: Software Design, Integration, Testing, and Evaluation 6. PERFORMING ORGANIZATION CODE

7. AUTHOR(S) 8. PERFORMING ORGANIZATION REPORT NO.

Cynthia Taylor and Deirdre Meldrum

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO.

Washington State Transportation Center (TRAC)
University of Washington, Box 354802 11. CONTRACT OR GRANT NO.

University District Building; 1107 NE 45th Street, Suite 535 Agreement T9903, Task 84
Seattle, Washington 98105-4631
12. SPONSORING AGENCY NAME AND ADDRESS 13. TYPE OF REPORT AND PERIOD COVERED

Research Office
Washington State Department of Transportation
Transportation Building, MS 47370

Draft technical report

Olympia, Washington 98504-7370 14. SPONSORING AGENCY CODE

Dave McCormick, Project Manager, 206-440-4486
15. SUPPLEMENTARY NOTES

This study was conducted in cooperation with the U.S. Department of Transportation, Federal Highway
Administration.
16. ABSTRACT

A Fuzzy Logic Ramp Metering Algorithm was implemented on 126 ramps in the greater Seattle
area. This report documents the implementation of the Fuzzy Logic Ramp Metering Algorithm at the
Northwest District of the Washington State Department of Transportation.

This programmer’s guide contains the software design for the new and modified code, the
integration procedure, the results of software regression testing, the test results of new functionality, a
discussion of the performance evaluation software used, the algorithm’s transferability to other regions,
and recommendations for the future.

Two other related reports cover the project’s research approach, evaluation method, and the
results of on-line testing of the Fuzzy Logic Ramp Metering Algorithm, as well as the algorithm design
and tuning technique.

17. KEY WORDS 18. DISTRIBUTION STATEMENT

Ramp metering, fuzzy logic control, intelligent
transportation systems, freeway operations,
transportation management software

No restrictions. This document is available to the
public through the National Technical Information
Service, Springfield, VA 22616

19. SECURITY CLASSIF. (of this report) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE

None None

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible

for the facts and the accuracy of the data presented herein. The contents do not

necessarily reflect the official views or policies of the Washington State Transportation

Commission, Department of Transportation, or the Federal Highway Administration.

This report does not constitute a standard, specification, or regulation

iii

TABLE OF CONTENTS

Section Page

INTRODUCTION . 1

SOFTWARE DESIGN . 2
Modified Code ... 2

Ramp Metering Database .. 3
Changes to rmdb.h .. 3
Changes to rmdb_tbl.c.. 4
Changes to build_rmdb.c.. 8
Changes to rmdb_sub.c.. 8

Real-Time Processes .. 15
Communications Protocol.. 17
Changes to opc_comm.... 17
Changes to rmdc_comm.... 17
Changes to fddb.h .. 21

170 ... 23
Utilities .. 24

New Code... 25
Fuzzymeter.c .. 27
Watch_fuzzymeter.c.. 28
Fuzzymeter_sub.c.. 35
Fuzzy.h .. 68
Configuration Management .. 70
Edit_20_sec.c.. 73

SOFTWARE TESTING. 76
Integration Procedure.. 76
Results of Regression Testing.. 79

Rmdb ... 79
Build_all_db ... 79
Fmdb... 80
Rtdb... 80
Rmdc ... 81
Rmdc_comm 82
Opc_comm.... 82
VMS_comm 83
NOAA_monitor .. 83
CCTV... 84
Mon_event_log.. 84
Log Files .. 84
Incident Detect . 88
TMSUW 88

Test Results of New Functionality . 89
Build_rmdb ... 89
Fuzzymeter .. 94
170 ... 96
CPU Requirements .. 98

Bug Report. 100

iv

PERFORMANCE EVALUATION SOFTWARE . 101
Methods Explored .. 101
Getting 20-Second Data.. 103
Processing 20-Second Data.. 104

TRANSFERABILITY. 112

RECOMMENDATIONS. 114

ACKNOWLEDGEMENTS . 118

REFERENCES . 119

v

LIST OF FIGURES

Figure Page

1. New Poll Format for Central Metering Rates .. 18

LIST OF TABLES

Table Page

1. Fuzzy Metering Parameters .. 5
2. Summary of Modified Files for the Ramp Metering Database 14
3. Summary of Modified Files for the Real-Time Processes.. 16
4. Summary of Modified Files for Communications Protocol.. 19
5. Lane Status.. 22
6. Summary of Modified Files for Utilities.. 24
7. Summary of New Files for Fuzzy Metering.. 26
8. Parallel Modules Called from Fuzzymeter and Watch_fuzzymeter . 36
9. Description of the Fuzzy Table’s Layout in Memory.. 42

10. Summary of New MMS Files for Configuration Management. 71
11. Regression Test Results for Incident Detection... 88
12. Equation Error Checks Performed in Build RMDB... 93
13. Equation Error Checks Performed by Fuzzymeter Upon Start-Up... 96
14. CPU Requirements of Processes Over a 2-Hour Period.. 99

1

INTRODUCTION

This report documents the implementation of the Fuzzy Logic Ramp Metering

Algorithm at the Northwest District of the Washington State Department of Transportation

(WSDOT). The preliminary stages of the software documentation and the software

integration plan were carried out under a previous WSDOT/TransNow research grant. For

documentation of the pre-existing code that now interfaces with the Fuzzy Logic Ramp

Metering Algorithm, see Taylor and Meldrum, 1997.

Three reports represent the culmination of the Fuzzy Logic Ramp Metering

Algorithm project. 1) This programmer’s guide contains the software design for the new

and modified code, the integration procedure, the results of software regression testing, the

test results of new functionality, a discussion of the performance evaluation software used,

the algorithm’s transferability to other regions, and recommendations for the future. 2) See

“Evaluation of a Fuzzy Logic Ramp Metering Algorithm: A Comparative Study Among

Three Ramp Metering Algorithms used in the Greater Seattle Area” for the research

approach, evaluation method, and the on-line test results of the Fuzzy Logic Ramp

Metering Algorithm (Taylor and Meldrum, 2000). 3) For information regarding the

algorithm design and tuning technique, see the technical report “Algorithm Design, User

Interface, and Optimization Procedure for a Fuzzy Logic Ramp Metering Algorithm: A

Training Manual for Freeway Operations Engineers” (Taylor and Meldrum, 2000).

2

SOFTWARE DESIGN

The Fuzzy Logic Ramp Metering Algorithm was implemented in a manner parallel

to the other processes within the Transportation Management Software (TMS). Fuzzy

metering is implemented as the last Traffic Analysis Program (TAP) before the Real Time

Data Base (RTDB) is scrolled. All TAPS read an input file created during the data base

build. In the case of fuzzymeter, it reads “fuzzy_meter.eqn” produced by running

build_rmdb. All TAPS execute their calculations every 20 seconds when rt_skeleton sets

their particular start flag. As soon as the rt_skeleton receives the flag that a TAP has

completed or timed-out (whichever comes first), rt_skeleton will begin the next process.

Watch_fuzzymeter was implemented as a utility in a manner parallel to the other

stand-alone utilities. It updates the display of the fuzzymeter calculations every 20 seconds

when it is called from rt_skeleton. It is called from rt_skeleton after the other watch utilities

have completed. (The TAPS are executed before the RTDB is scrolled, and the utilities are

executed after the RTDB has been scrolled.)

All modified and new code contains internal documentation in the source code,

which is more detailed than that given here. This report contains supplementary

documentation to provide an overview of the software design. For the psuedo code given,

the bulleted level of indentation refers to the software control structure. Module names are

in boldface. Defined constants are in all capital letters.

MODIFIED CODE

The Fuzzy Logic Ramp Metering Algorithm interfaces with the Ramp Metering Data

Base (RMDB), real-time skeleton, operator console, and 170s. Through the RMDB, the

user can specify the inputs for each metered lane and define the control parameter defaults.

The real-time skeleton executes all real-time processes at the appropriate time. Through the

operator console, the operators can monitor and adjust the Fuzzy Logic Ramp Metering

3

Algorithm. With changes to rmdc_comm, fuzzymeter can send its metering rates to the

170s. All total, approximately 77,000 lines of code were modified to integrate the

algorithm. These modifications were for the controller interface (not the controller itself)

and are specific to Seattle’s TSMC.

Ramp Metering Database

To incorporate the fuzzy ramp metering algorithm, additional global parameters

were added to the RMDB. New fuzzy metering parameters allow the operators to enable

and tune the algorithm. The resulting fuzzy metering rates are written to new elements in

RMDB. To add these new elements to the RMDB, changes to the RMDB were made in

rmdb.h and rmdb_tbl.c. To parse the new fuzzy parameters and fuzzy equations in the

input file, modifications were made to build_rmdb.c, rmdb_sub.c, and tok_tabl.c. The

prototypes for the new functions to parse the fuzzy equations were added to

rmdb_func_prot.h. This section describes in detail the changes made to each file and the

psuedo code for the new functions. Table 2 summarizes the modifications for each file

related to the RMDB.

Changes to rmdb.h

1) Define indices for two new group names

#define FUZZYMETER_PARAMS 20

#define FUZZYMETER_EQNS 21

2) Modify the structure rmdb_file_pointers (structure rmdb_table_list points to this table

as well as other tables) to include a FILE pointer for fuzzy_meter.eqn. This is for the

temporary equation file created by build_rmdb and used by fuzzymeter to build the

fuzzy table.

3) Modify the structure for rm_dc_data_col to include the three new 170_Data

parameters, _MeterRateLane1, _MeterRateLane2 and _MeterRateLane3, which store

the resulting fuzzy logic ramp metering rates for each lane.

4

4) Modify the structure for rm_dc_data_col to include the 52 new

Fuzzy_Meter_Parameters that include dynamic range limits, rule weights, operator

permit fuzzy control. The parameter specifications are given in Table 1.

5) Change defined indices to enumerated constants. (The values are equivalent.)

Changes to rmdb_tbl.c

1) Add the two new group names Fuzzymeter_Parameters and Fuzzymeter_Equations to

the group_table array. This array is of the structure fddb_group_table, defined in

fddb.h. The structure itself does not need modification. This array must correspond

to the group name indices defined in rmdb.h.

2) Modify the minimum, maximum, default, and ep_mask arrays to include initial values

for the new parameters (See Table 1). These arrays are of structure type

rm_dc_data_col defined in rmdb.h. The arrays must fit this structure.

3) Add new parameters to the name_table. This array is of type fddb_name_table, which

is defined in fddb.h. The structure itself does not need modification. This array must

correspond with parameter structure for data column in rmdb.h.

4) Add new group names and element names to output_list array. This array is of the

structure fddb_output_list, defined in fddb.h. The structure itself does not need

modification. The output list must correspond with the parameter structure and group

indices defined in rmdb.h.

 5

Table 1. Fuzzy Metering Parameters

NAME DESCRIPTION CODING UNIT MIN MAX DEFAULT EXAMPLE

AdvQueueOccHigh1 High end of dynamic range for Advance Queue Occ, lane 1 USHORT1P % 0.0% 100.0% 30.0% AdvQueueOccHigh1 = 30.0%

AdvQueueOccHigh2 High end of dynamic range for Advance Queue Occ, lane 2 USHORT1P % 0.0% 100.0% 30.0% AdvQueueOccHigh2 = 30.0%

AdvQueueOccHigh3 High end of dynamic range for Advance Queue Occ, lane 3 USHORT1P % 0.0% 100.0% 30.0% AdvQueueOccHigh3 = 30.0%

AdvQueueOccLow1 Low end of dynamic range for Advance Queue Occ, lane 1 USHORT1P % 0.0% 100.0% 12.0% AdvQueueOccLow1 = 12.0%

AdvQueueOccLow2 Low end of dynamic range for Advance Queue Occ, lane 2 USHORT1P % 0.0% 100.0% 12.0% AdvQueueOccLow2 = 12.0%

AdvQueueOccLow3 Low end of dynamic range for Advance Queue Occ, lane 3 USHORT1P % 0.0% 100.0% 12.0% AdvQueueOccLow3 = 12.0%

AdvQueueOccWt1 Weight for Adv Queue Occupancy Rule, lane 1 UBYTE1 N/A 0.0 25.5 4.0 AdvQueueOccWt1 = 4.0

AdvQueueOccWt2 Weight for Adv Queue Occupancy Rule, lane 2 UBYTE1 N/A 0.0 25.5 4.0 AdvQueueOccWt2 = 4.0

AdvQueueOccWt3 Weight for Adv Queue Occupancy Rule, lane 3 UBYTE1 N/A 0.0 25.5 4.0 AdvQueueOccWt3 = 4.0

DownOccHigh High end of dynamic range for Downstream Occupancy USHORT1P % 0.0% 100.0% 25.0% DownOccHigh = 25.0%

DownOccLow Low end of dynamic range for Downstream Occupancy USHORT1P % 0.0% 100.0% 11.0% DownOccLow = 11.0%

DownSpeedHigh High end of dynamic range for Downstream Speed USHORT1 MPH 0.0 100.0 55.0 DownSpeedHigh = 55.0

DownSpeedLow Low end of dynamic range for Downstream Speed USHORT1 MPH 0.0 100.0 40.0 DownSpeedLow = 40.0

DownSpVs_OccVbWt Weight for Very Small Speed and Very Big Occ Rule UBYTE1 N/A 0.0 25.5 4.0 DownSpVs_OccVbWt= 4.0

 6

NAME DESCRIPTION CODING UNIT MIN MAX DEFAULT EXAMPLE

LocalOccHigh HIgh end of dynamic range for Local Occupancy USHORT1P % 0.0% 100.0% 25.0% LocalOccHigh = 25.0%

LocalOccLow Low end of dynamic range for Local Occupancy USHORT1P % 0.0% 100.0% 11.0% LocalOccLow = 11.0%

LocalOccVbWt Weight for Local Very Big Occupancy Rule UBYTE1 N/A 0.1 25.5 2.5 LocalOccVbWt =2.5

LocalOccBWt Weight for Local Big Occupancy Rule UBYTE1 N/A 0.1 25.5 1.0 LocalOccBWt = 1.0

LocalOccMWt Weight for Local Medium Occupancy Rule UBYTE1 N/A 0.1 25.5 1.0 LocalOccMWt = 1.0

LocalOccSWt Weight for Local Small Occupancy Rule UBYTE1 N/A 0.1 25.5 1.0 LocalOccSWt = 1.0

LocalOccVsWt Weight for Local Very Small Occupancy Rule UBYTE1 N/A 0.1 25.5 1.0 LocalOccVsWt = 1.0

LocalSpeedHigh High end of dynamic range for Local Speed USHORT1 MPH 0.0 100.0 55.0 LocalSpeedHigh = 55.0

LocalSpeedLow Low end of dynamic range for Local Speed USHORT1 MPH 0.0 100.0 35.0 LocalSpeedLow = 35.0

LocSpVs_OccVbWt Weight for Local Very Small Speed and Very Big Occ Rule UBYTE1 N/A 0.0 25.5 3.0 LocSpVs_OccVbWt = 3.0

LocalSpeedSWt Weight for Local Small Speed Rule UBYTE1 N/A 0.0 25.5 1.0 LocalSpeedSWt = 1.0

LocalSpeedBWt Weight for Local Big Speed UBYTE1 N/A 0.0 25.5 1.0 LocalSpeedBWt = 1.0

LocSpVb_OccVsWt Weight for Local Very Big Speed and Very Small Occ Rule UBYTE1 N/A 0.0 25.5 1.0 LocSpVb_OccVsWt = 1.0

MeterRateHigh1 High limit for metering rate produced by fuzzy controller, lane 1 UBYTE1 VPM 0.0 25.5 19.3 MeterRateHigh1 = 19.3

MeterRateHigh2 High limit for metering rate produced by fuzzy controller, lane 2 UBYTE1 VPM 0.0 25.5 19.3 MeterRateHigh2 = 19.3

MeterRateHigh3 High limit for metering rate produced by fuzzy controller, lane 3 UBYTE1 VPM 0.0 25.5 19.3 MeterRateHigh3 = 19.3

 7

NAME DESCRIPTION CODING UNIT MIN MAX DEFAULT EXAMPLE

MeterRateLow1 Low limit for metering rate produced by fuzzy controller, lane 1 UBYTE1 VPM 0.0 25.5 3.0 MeterRateLow1 = 3.0

MeterRateLow2 Low limit for metering rate produced by fuzzy controller, lane 2 UBYTE1 VPM 0.0 25.5 3.0 MeterRateLow2 = 3.0

MeterRateLow3 Low limit for metering rate produced by fuzzy controller, lane 3 UBYTE1 VPM 0.0 25.5 3.0 MeterRateLow3 = 3.0

PermitFuzzyMr1 Enable fuzzy control at this meter YES_NO FLAG NO YES NO PermitFuzzyMr1 = NO

PermitFuzzyMr2 Enable fuzzy control at this meter YES_NO FLAG NO YES NO PermitFuzzyMr2 = NO

PermitFuzzyMr3 Enable fuzzy control at this meter YES_NO FLAG NO YES NO PermitFuzzyMr3 = NO

QueueOccHigh1 High end of dynamic range for Queue Occupancy, lane 1 USHORT1P % 0.0% 100.0% 30.0% QueueOccHigh1 = 30.0%

QueueOccHigh2 High end of dynamic range for Queue Occupancy, lane 2 USHORT1P % 0.0% 100.0% 30.0% QueueOccHigh2 = 30.0%

QueueOccHigh3 High end of dynamic range for Queue Occupancy, lane 3 USHORT1P % 0.0% 100.0% 30.0% QueueOccHigh3 = 30.0%

QueueOccLow1 Low end of dynamic range for Queue Occupancy, lane 1 USHORT1P % 0.0% 100.0% 12.0% QueueOccLow1 = 12.0%

QueueOccLow2 Low end of dynamic range for Queue Occupancy, lane 2 USHORT1P % 0.0% 100.0% 12.0% QueueOccLow2 = 12.0%

QueueOccLow3 Low end of dynamic range for Queue Occupancy, lane 3 USHORT1P % 0.0% 100.0% 12.0% QueueOccLow3 = 12.0%

QueueOccWt1 Weight for Queue Occupancy Rule, Lane 1 UBYTE1 N/A 0.0 25.5 2.0 QueueOccWt1 = 2.0

QueueOccWt2 Weight for Queue Occupancy Rule, Lane 2 UBYTE1 N/A 0.0 25.5 2.0 QueueOccWt2 = 2.0

QueueOccWt3 Weight for Queue Occupancy Rule, Lane 3 UBYTE1 N/A 0.0 25.5 2.0 QueueOccWt3 = 2.0

8

Changes to build_rmdb.c

Build_rmdb opens and reads rmdb_input.fil, builds RMDB, creates temporary files

(loop_names.lst, inc_det.eqn, btl_neck.eqn, speed_traps.lst, stn_aggr.eqn,

station_names.lst, actv_anal.eqn) that are later used to build tables in global memory for

TAPS. It also sorts names, loops, stations, and speeds traps and writes them to a file

rtfmdbname.srt to be used for later creation of the RTDB and Five Minute Data Base

(FMDB). Build_rmdb starts a long chain of events, calling function upon function. For

details on how build_rmdb works, see Taylor and Meldrum, 1997.

To incorporate the Fuzzy Logic Ramp Metering Algorithm, build_rmdb must also

read the fuzzy parameters and fuzzy equations from rmdb_input.fil and create a temporary

file called fuzzy_meter.eqn that is subsequently used by fuzzymeter to build the fuzzy table

in global memory.

The only changes made to build_rmdb.c itself are to open the temporary equation

file fuzzy_meter.eqn before reading rmdb_input.fil and to close this file after reading

rmdb_input.fil. However, there are several changes in functions in rmdb_sub.c that are

indirectly called from build_rmdb.c.

Changes to rmdb_sub.c

Process_input_special_case is called from get_param. A pointer to the

function get_param is in the read_fddb_file, which contains a function state table that tells

read_fddb (called from build_rmdb) how to parse the input file rmdb_input.fil.

Process_input_special_case calls functions to handle the current input line, depending

on the current group index. The only change to process_input_special_case is to call

get_fuzzy_eqn when the current group index is FUZZY_EQNS.

Two new functions were added to rmdb_sub.c: 1) get_fuzzy_eqn and 2)

get_next_fuz_line. Note: Fuzzy parameters are not a special parameter case, so they

are handled by load_param, which is called from get_param.

9

1) Get_fuzzy_eqn — Parses current line from data file and writes it to a fuzzy

equation file in a fixed format. (See training manual on how to write fuzzy equations,

Taylor and Meldrum, 2000.) (Note: The return values are used differently than they are

for the other functions called from process_input_special_case. END_LINE is

returned regardless of error or success so that get_param does not continue to parse the

same line. If an error occurs, the message is logged by fddb_error, and the line is

skipped by returning END_LINE.)

• Calculate pointer to data column

• Make sure data column is a RAMP_MTR or DATA_STN. Otherwise, write error

message and return to get next line

• Get cabinet:loop name from line buffer using strtok

Note: strtok uses 1 or more skip characters as delimiters between tokens. Strtok

returns the pointer to the next token in the input buffer and writes a NULL at the

end of the token. Subsequent calls using NULL as the first argument continue to

parse the same buffer and remember the current location

• Verify that cabinet:loop name is in proper format with get_cab_loop_name

• If the cabinet name does not match the current group name

Write error to fddb_err and return to get next line

• If string is not of fuzzy equation type containing string ‘FM’

Write wrong equation type error to fddb_err and return to get next line

• Initialize current pointer to the beginning of a buffer that will subsequently be written to

fuzzy equation file

10

Note: Before writing the reformatted equation is written to the fuzzy equation file, the

buffer is written to a temporary buffer. This buffering technique allows writing

over the equation (skipping) if an error is found.

• Write cabinet:loop name to buffer and update pointer

• Initialize number of loops written to this line to 1

• For each station location

• Initialize the number of station/loops at this location to zero

• Do-while stations are of same type (the loop executes the first time and continues

to execute as long as the `&' delimiter is between station names)

Note: `&' is used to delimit between two stations of the same location type, and `|'

is used to delimit stations of different location type

• If the allowable number of loops is exceeded, write error message to fddb_error

One loop or station is allowed for the UP and HOV_BYPASS input (see

training manual). The LOCAL, QUEUE and ADV_QUEUE allow up to five

loops or stations. The DOWNSTREAM input allows up to 20 loops or

stations

• Get cab:loop name from input line using strtok

• If no token is found

• Get next line from input file with get_next_fuz_line

• If line_type is not a parameter, write error message to fddb_error and

return to get next line

11

• Try again to get loop detector (or station) name from input line using strtok

• Verify that cabinet:loop name is in proper format with get_cab_loop_name

• If the cabinet name does not match the current group name

Write error to fddb_err and return to get next line

• If this location is QUEUE, ADV_QUEUE, or HOV_BYPASS, get the number

of samples used to calculate the input or % adjustment applied to lane

• If number of samples or % adjustment is not found

Write error to fddb_err and return to get next line

• If location is HOV_BYPASS

• If % adjustment applied to lane is outside of 0-100 range

Write error to fddb_err and return to get next line

• If loop name is not of HOV passage type containing string “HP”

Write error to fddb_err and return to get next line

• If location is ADV_QUEUE

• If loop name is of HOV passage type containing string “HP”

Write error to fddb_err and return to get next line

• Increment the number of loops found for this station

• If the number of loops already written to this line in buffer is 3, begin on next

line because this line is full

• If the location is QUEUE, ADV_QUEUE, or HOV_BYPASS

Write the detector name and number of samples or percentage of adjustment to

buffer and update buffer pointer

12

• Else

Write detector name to buffer and update buffer pointer

• Increment the number of loops written to this line in buffer

• Get delimiter from input line using strtok (expecting `&' or `|' to continue

equation)

• If location is greater than or equal to ADV_QUEUE and delimiter is not found

End of sucessful equation was found. Write equation to buffer and return.

• Else if delimiter is not found

Not expecting end of equation. Write error message with fddb_error and

return to get next line

• Else if token is `&'

Write delimiter to buffer and update pointer

• End of do-while no more stations of this type

• If location is HOV BYPASS and delimiter is `|', error because too many locations

Write error message with fddb_error and return to get next line

• Else If delimiter is not equal to `|', there is a missing delimiter. (The equation was

expected to continue.)

Write error message with fddb_error and return to get next line

• Else write delimiter to buffer and update pointer

• End for each station location

13

2) Get_next_fuz_line — This new function is called from get_fuzzy_eqn

when a fuzzy equation continues past more than one line. This function is identical to

get_next_btl_line (located in /fddb/rmdb/rmdb_sub.c) except for the error message.

Although the same function could have been used for both with slight modification,

changes to bottleneck were avoided.

• Loop until line type returned by get_next_fuz_line is a blank, form feed, or

comment

Get_next_line returns line_type of comment, curly_brace, square_bracket, or

parameter. (See Taylor and Meldrum, 1997, for details). Line is stored in global

memory tl->lb_ptr->line_buffer

• If find wrong line_type, write error

• Else return with parameter type line

14

Table 2. Summary of Modified Files for the Ramp Metering Data Base

FILE MODIFICATION

Rmdb.h 1) Defined indices for new group names FUZZYMETER_PARAMS and

FUZZYMETER_EQNS.

2) Declared file pointer for FUZZY_METER.EQN.

3) Declared new elements _MeterRateLane1, _MeterRateLane2 and

_MeterRateLane3 in 170_Data group of data column.

4) Declared 52 new Fuzzy_Meter_Parameters in data column.

5) Changed defined indices to enumerated constants.

Rmdb_tbl.c 1) Added two new group: [Fuzzymeter_Parameters] and [Fuzzymeter_Equations]

2) Initialized minimum, maximum, default, and ep_mask for the new parameters

in data column

3) Added 52 new Fuzzymeter_Parameters and 3 in 170_Data group to the

fddb_name_table.

4) Added new Fuzzymeter_Parameters to the fddb_output_list

Build_rmdb.c 1) Added Open/Close of fuzzy_meter.eqn file.

2) Deleted path for include files.

rmdb_sub.c 1) Added get_fuzzy_eqn.

2) Added get_next_fuz_line .

3) Modified process_input_special_case to call get_fuzzy_eqn when the

current group index is FUZZY_EQNS.

Tok_tabl.c
Added fuzzy metering options to loop_name entry. Declare char arrays fuzzylane1,

fuzzylane2, and fuzzylane3 to be "FM1", "FM2", and "FM3"

Rmdb_func_prot.h Added function prototypes for get_fuzzy_eqn and get_next_fuz_line

15

Real-Time Processes

To start up fuzzymeter with the other processes and incorporate the stand-alone

utility watch_fuzzymeter, minor changes were made to the real-time processes. Table 3

describes the changes made to tms_startup.c, rt_skeleton.c, tms_realtime.h,

event_common.h, tap.h, and stop_tms.com. For a further description of how the real-time

processes work, see Taylor and Meldrum, 1997.

16

Table 3. Summary of Modified Files for the Real-Time Processes

FILE MODIFICATION

tms_startup.c 1) Delete paths for include *.h

2) Added start_tms_process for fuzzymeter

3) Associate event flags for watch_fuzzymeter

4) Added start_process for tmsuw

5) Changed to support a developmental version

rt_skeleton.c 1) Deleted paths for include *.h.

2) Added run_process_wait for fuzzymeter

3) Added run_process_alt_bit for watch_fuzzymeter.

4) Associate to event flags for watch_fuzzymeter.

5) Added local flag wm_v_20_sec_tick.

6) Fixed version string to include ‘V’ on log_tms_event.

tms_realtime.h 1) Added in event flags: RT_V_FUZZYMETER_START and

RT_V_FUZZYMETER_DONE. Add event masks for those

events: RT_M_FUZZYMETER_START and RT_M_

FUZZYMETER_DONE.

 2) Added WATCH_FUZZYMETER Event Flag Cluster Name

Descriptors

3) Added WATCH_FUZZYMETER Event Flag Bit Assignment

event_common.h Defined facility number for FUZZYMETER

Tap.h
Defined action codes FM_TABLE_START and FM_SET_START

used in fuzzy meter table

stop_tms.com Added Stop Fuzzymeter

17

Communications Protocol

To implement Fuzzy Metering, the changes listed in Table 4 were made to

opc_comm_sub.c, rmdc_comm.h, rmdc_comm.c, rmdc_comm_sub.c, and fddb.h.

Changes to opc_comm

To tune the Fuzzy Metering Algorithm from the operator consoles running TMS, it

is necessary that the new fuzzy parameters are sent to TMS along with the other tunable

parameters. Within opc_comm_sub.c, a module called wc_search_param_tuning_list

contains a list of parameters that are sent to TMS upon receiving a parameter request from a

PC. The fuzzy metering parameters given in Table 1 were added to this module’s list.

Changes to rmdc_comm

Prior to this project, the VAX and 170 software did not support the capability of

implementing a central metering rate directly. The 170 was able to implement a metering

rate adjustment from the central VAX (like the bottleneck metering rate adjustment), but

because most of the logic was embedded in the 170 logic, the old design precluded the

ability to directly implement a central metering rate. Prior to this project, the only way that

it could be done was to set both the minimum and maximum allowable metering rates for a

given ramp to equal the desired rate. This method was found to be too cumbersome for the

implementation of the Fuzzy Logic Ramp Metering Algorithm, particularly when

supporting multiple ramp metering algorithms simultaneously. For this reason, the

software was altered both on the VAX and 170s to support the capability of directly

implementing ramp metering rates from the VAX.

We modified the communications protocol between the VAX and 170. This

involved minor code changes to rmdc_comm_sub.c, rmdc_comm.c, and the 170. A new

data poll containing direct metering rates was created, called

DATA_POLL_METER_RATE. The old data poll was renamed DATA_POLL_

RATE_ADJ. The command bytes for these data polls were defined in rmdc_comm.h as

shown in Figure 1. The new data poll is requested from rmdc_comm.c and

18

rmdc_comm_sub.c, which builds and sends it using a new module called

build_and_queue_170_meter_rate (Figure 1).

SOH To From CMD

(=0x45)

Seq No. Count

(=4)

Header

CRC
Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6-7

Btl

Adj

Frate

 Lane 1

FRate

Lane 2

FRate

Lane 3

Data CRC

Byte 8 Byte 9 Byte 10 Byte 11 Byte 12-13

Figure 1. New Poll Format for Central Metering Rates

19

Table 4. Summary of Modified Files for Communications Protocol

FILE MODIFICATION

opc_comm_sub.c Fuzzy Parameters added to parameter list in wc_search_param_tuning_list

Rmdc_comm.h 1) Renamed DATA_POLL to DATA_POLL_RATE_ADJ

2) Defined DATA_POLL_METER_RATE as 0x45

Rmdc_comm.c 1) Renamed DATA_POLL to DATA_POLL_RATE_ADJ.

2) Added new case to handle data poll DATA_POLL_METER_RATE on line

1782. The new case calls process_data, which handles the

DATA_POLL_METER_RATE the same as the case for

DATA_POLL_RATE_ADJ.

3) Replaced call to build_and_queue_170_msg with call to

build_and_queue_170_meter_rate for test case on line 2725.

4) Replaced call to build_and_queue_170_msg with call to

build_and_queue_170_meter_rate for multi_port case on line 2992

5) Added if-else to send statement to send appropriate data poll. This if

statement is not necessary now that all of the 170s can handle the new data

poll.

Rmdc_comm_sub.c 1) Renamed DATA_POLL to DATA_POLL_RATE_ADJ, line 2914.

2) Added new data poll function on build_and_queue_170_meter_rate,

line 2922.

3) Replaced test menu case 'P' to build_and_queue_170_meter_rate from

build_and_queue_170_msg, line 6761.

4) Added if-else to send appropriate type of data poll. This if statement is not

necessary now that all of the 170s can handle the new data poll.

fddb.h Redefined Lane Status 0x0F from LS_COMM_FAIL to LS_FUZZY.

20

It is possible for bottleneck and fuzzymeter to operate simultaneously on different

lanes within the same cabinet (although this is not recommended). Because fuzzy metering

is lane specific while bottleneck is cabinet specific, there is not a flag to indicate whether

bottleneck or fuzzymeter is in effect for that cabinet. Instead, a fuzzy metering rate of 0

indicates to the 170 that fuzzy metering is disabled for that lane. If the fuzzy metering rate

is disabled or cannot be calculated because of insufficient data, the bottleneck metering rate

is used on that lane, unless bottleneck is also disabled. If both central algorithms are

disabled, the 170 determines the metering rate, which is usually the local metering rate.

Essentially, the control hierarchy is unaltered except that fuzzy metering has been added to

the top of the ramp metering decision tree. In general, inexplicit override of one controller

over another is undesirable but was difficult to avoid in this case because fuzzymeter is lane

specific while bottleneck is cabinet specific. For further details regarding the control

hierarchy between the ramp metering algorithms, see the training manual (Taylor and

Meldrum, 2000).

Fuzzymeter is similar to bottleneck in that both algorithms disable the central

metering rate or rate adjustment before writing over it. Every time bottleneck is called, it

writes -128 to the metering rate adjustment for all cabinets, which has the effect of

disabling the Bottleneck adjustment if –128 is sent to the 170. Then bottleneck writes over

the adjustments for which OperPermitBtl is enabled. Likewise, Fuzzymeter initially writes

0 into MeterRateLane1, MeterRateLane2, and MeterRateLane3, which signifies to the 170

that the metering rates are disabled. If PermitFuzzy1, PermitFuzzy2, or PermitFuzzy3 is

enabled, fuzzy metering calculates a metering rate for the specified lanes and writes over the

disabled metering rates.

In the future, it may be desirable to add a third central metering algorithm and have

the capability to choose between them. It would not be difficult to add this capability.

Additional parameters will need to be added to data columns within RMDB, including flags

to indicate which algorithm to use in each lane and storage space for the metering rates

21

generated by each central algorithm. If logic were to be used to choose a metering rate, this

new main would be treated as an additional TAP. Because each TAP is completed before

the next begins, logic to choose metering rates could use the results from fuzzymeter,

bottleneck, and any additional algorithms. (However, because the fuzzy logic controller

already uses system-wide information to arrive a metering rate, we expect that performance

would degrade with a piece-meal control approach.)

Changes to fddb.h

The lane status is among the data returned from the 170 to the VAX. The

interpretation of the lane status has been redefined as shown in Table 5. The value of the

lane status indicates the mode of metering last implemented by the 170.

22

Table 5. Lane Status

Value Group Meter

Status

Single Meter

Status

Condition

0x00 OFF Meter Off Meter Off

0x01 (L) (L) Local rate used

0x02 (L)Q (L) Q Adjust Local w/ Queue Adjustment

0x03 (L)AQ (L) AQ Adjust Local w/ Advance Q Adjustment

0x04 (B) (B) Bottleneck rate used

0x05 (B)Q (B)Q Adjust Bottleneck w/ Queue Adjustment

0x06 (B)AQ (B) AQ Adjust Bottleneck w/ Advance Q Adjustment

0x07 (P) (P) Prediction rate used

0x08 (P)Q (P) Q Adjust Prediction w/ Queue Adjustment

0x09 (P)AQ (P) AQ Adjust Prediction w/ Advance Q Adjustment

0x0A (T) (T) TOD rate used

0x0B (T)A (T) Q Adjust TOD w/ Queue Adjustment

0x0C (T)AQ (T) AQ Adjust TOD w/ Advance Q Adjustment

0x0D -P- Police Mode Police Mode – Steady Green

0x0E E D/F Comm is Failed or Disabled

0x0F FUZY Fuzzy Control Fuzzy Meter Control

23

170

To correctly interpret the new data poll containing direct metering rates, the 170

logic was modified. Because fuzzymeter directly implements a rate without further

adjustments, the new logic must bypass the local logic within the 170 when this occurs.

This design allows the existing logic to remain in place and operate as before, unless a

nonzero (enabled) fuzzy metering rate is provided. The new logic functions in this way:

For each lane

• If fuzzy metering rate > 0 (it is not disabled)

Implement fuzzy meter rate

• Else

Proceed with logic for other ramp metering algorithms

The 170 interprets the fuzzy metering rate as an unsigned byte ranging between 0 and 255,

corresponding to metering rates between 0 and 25.5 VPM. (The bottleneck adjustment

ranges between -12.8 and 12.7 VPM.)

Note that any central ramp metering algorithm which needs to directly implement a

metering rate can use this same mechanism by putting the desired metering rates in

MeterRate1, MeterRate2, and MeterRate3 of the RMDB. Rmdc_comm will send the direct

rates through the new data poll, and the 170 will implement them. The use of the new data

poll and new 170 logic is not limited to use by fuzzymeter. Currently, Fuzzy Metering is

the only algorithm which implements rates directly.

24

Utilities

Minor modifications were made to the utilities listed in Table 6.

Table 6. Summary of Modified Files for Utilities

FILE MODIFICATION

Get_20_sec_data.c Defined GET_20_LOG in order to create text files.

Ifdef's have been added so that *.dat files are no longer created unless

GET_20_DAT is defined.

Watch_actv_anal.c Moved mvwrtstr and mvwrtstr_attrib to watch_sub.c

Watch_bottleneck.c Moved mvwrtstr and mvwrtstr_attrib to watch_sub.c

Watch_fmdb.c Moved mvwrtstr and mvwrtstr_attrib to watch_sub.c

Watch_rmdc.c Moved mvwrtstr and mvwrtstr_attrib to watch_sub.c

Wfmdb.c Moved mvwrtstr and mvwrtstr_attrib to watch_sub.c

Wrtdb.c Moved mvwrtstr and mvwrtstr_attrib to watch_sub.c

Tms_lib_func_prot.h Added mvwrtstr, mvwrtstr_vertical, mvwrtstr_attrib,

mvwrtstr_underline

25

NEW CODE

To implement the Fuzzy Logic Ramp Metering Algorithm, the new files in Table 7

were created. These files reside in the directory tms_code/rt_skeleton/fuzzymeter. Overall,

approximately 8000 lines of code were added to the TMSC VAX software.

26

Table 7. Summary of New Files for Fuzzy Metering

FILE
FUNCTION

Fuzzymeter.c Main process called every 20 seconds from rt_skeleton for

calculating rates. Calls build_fuzzymeter_table and

calc_fuzzymeter.

Watch_fuzzymeter.c Stand alone process, updated every 20 seconds when called by

rt_skeleton. Calls to build_watch_fuzzymeter_table and

calc_watch_fuzzymeter.

Fuzzymeter_sub.c Contains modules called by watch_fuzzymeter and fuzzymeter:

build_fuzzymeter_table, build_watch_fuzzymeter_table,

calc_fuzzymeter, calc_watch_fuzzymeter, calc_fuzzy_rate,

calc_watch_fuzzy_rate, fuzzify, rules, watch_rules, and

defuzzify.

Fuzzy.h Contains definitions, structures, function prototypes, and compile

options for fuzzymeter and watch_fuzzymeter.

Watch_sub.c mvwrtstr — Move Cursor and Write String

mvwrtstr_attrib — Move Cursor and Write String w/ Attributes

mvwrtstr_vertical — Move Cursor and Write String Vertically

mvwrtstr_underline — Move Cursor and Write Underline

Edit_20_sec.c A stand-alone utility that automatically rewrites the input file used

by get_20_sec_data and starts the 20-second data collector at the

desired time. Allows automatic weekday collection of specified

data for the morning and afternoon metering periods. This

process is not required to run fuzzymeter, nor is it required to run

start_20_sec (which starts get_20_sec_data). See Performance

Evaluation Software for discussion.

27

Fuzzymeter.c

Fuzzymeter starts up the main, builds the fuzzymeter analysis table, and then

waits for an event flag from the real time skeleton to calculate metering rates. Fuzzymeter

is integrated as a TAP and is designed in a parallel manner to the other TAPS.

 General_process_startup

 Connect_to_mailbox

 Write_to_crash_log

• Associate to event flag cluster

• Clear all event flags

 Log_tms_event

 Log_tms_common

 Write_to_crash_log

• Get time

• Compose message

 Write_to_mailbox_nowait

 Map_to_RTDB

 Map_to_global_section

 Init_rtdb_tl

 Map_to_RMDB

 Map_to_global_section

28

 Init_rmdb_tl

• Build_fuzzymeter_table (see fuzzymeter_sub.c)

 While SHUTDOWN_TMS event flag is clear

 Wait for fuzzymeter start event flag with SYS$WAITFR

This flag gets set in rt_skeleton by SYS$SETEF

 Clear fuzzymeter start flag with SYS$CLREF

 calc_fuzzymeter (see fuzzymeter_sub.c)

 Set fuzzymeter done flag with SYS$SETEF

 Test shutdown flag with SYS$READEF

cond_code of SS$_WASCLR means do not shutdown

cond_code of SS$_WASSET means shutdown

Watch_fuzzymeter.c

Watch_fuzzymeter is a stand=alone utility. Upon start up, watch_fuzzymeter

builds the watch fuzzymeter analysis table. The user chooses which metered lane to

observe. Upon receiving an event flag from rt_skeleton, watch_fuzzymeter writes the

controller crisp inputs, fuzzified inputs, and rule outcomes, rule weights, and metering

rates are written to the screen. Watch_fuzzymeter is integrated as a utility program and is

designed in a manner parallel to the other utility programs.

 Map_to_RTDB

 Map_to_global_section

 Init_rtdb_tl

Map_to_RMDB

29

 Map_to_global_section

 Init_rmdb_tl

 Get_iochan – usually keyboard

 Get_term_char —get I/O channel number for TTY port

 Set_port_partial – TTY driver handles flow control

 Build_watch_fuzzymeter_table (see fuzzymeter_sub.c)

 If no fuzzy equation sets were returned by build_watch_fuzzymeter_table

 Print error message

 Set error_flag to YES

• Else

 Set error_flag to NO

 While error_flag is NO

 Print Banner

 Print User Options

 Get a character from user input

 Convert character to upper case

 If user did not choose watch fuzzymeter

Break from while loop

 Else

Print user input

30

 Select_cabinet – writes cabinet list to screen and receives user input

 If user chose a cabinet numbered < 0

 Print error message

 Continue while loop

 get_tty_bit – Set up TTY event flag bit and return bit number

 one_bit_mask – create mask for bit

• SYS$ASCEFC – Associate to watch_fuzzymeter’s event flag cluster

• If condition code returned by SYS$ASCEFC is not normal

 Print error message

 Continue while loop

 Two_bit_mask – create mask for two bits

 Create a mask to watch for either of two events: the start of watch fuzzymeter or a

keyboard interrupt

• SMG$CREATE_PASTEBOARD – Establish terminal screen as pasteboard

• SMG$CHANGE_PBD_CHARACTERISTICS – Change pasteboard size to 132

columns and 24 rows.

• SMG$CREATE_VIRTUAL_DISPLAY – Establish entire screen as a virtual

display

• SMG$CREATE_VIRTUAL_DISPLAY – Establish a virtual display for the cabinet

name, date and time window

31

• SMG$CREATE_VIRTUAL_DISPLAY – Establish a virtual display for the prompt

message window

• SMG$CREATE_VIRTUAL_DISPLAY – Establish a virtual display for the

diagnostic message window

• SMG$PASTE_VIRTUAL_DISPLAY – Paste entire screen as a virtual display

• SMG$PASTE_VIRTUAL_DISPLAY – Paste a virtual display for the prompt

message window

• SMG$PASTE_VIRTUAL_DISPLAY – Paste a virtual display for the cabinet

name, date and time window

• SMG$PASTE_VIRTUAL_DISPLAY – Paste a virtual display for the diagnostic

message window

• SMG$DRAW_LINE – Draw horizontal lines on the I/O window

• SMG$DRAW_LINE – Draw vertical lines on the I/O window

• SMG$DRAW_LINE – Draw horizontal lines on the rules window

• SMG$DRAW_LINE – Draw vertical lines on the rules window

 Get cabinet name from indexed cabinet list

 Find_fddb_cl_name – retrieve index to specified cabinet within RMDB

 Calculate pointer to cabinet column in RMDB

• Retrieve cabinet’s roadway type from RMDB

• Retrieve cabinet’s milepost from RMDB

• Retrieve cabinet’s location name from RMDB

32

• Put cabinet name, roadway, milepost, and location into a string

• Write string to cabinet window

• Write prompt message to prompt window

• Write headers for I/O window

• Write headers to rule window

• Queued_get_1_char – queue up a read request for a character from the keyboard

• SYS$CLREF – Clear the TTY interrupt bit

• SYS$WFLOR – Wait for start of watch_fuzzymeter

• SYS$READEF – Read condition code of start condition

• While there is no keyboard interrupt and no errors occur

• Calculate the alternative bit of whichever of two bits that last started

watch_fuzzymeter (as set by rt_skeleton), and perform bitwise OR of that bit

with the keyboard interrupt to watch for either of these two events

• Calculate the pointer to the current data column of the RTDB

• Get time stamp of the RTDB

• Get communication status of cabinet

• Write communication status and time into string

• Print string to cabinet window

33

• Calc_watch_fuzzymeter – calculate a metering rate and return data and

diagnostic flag (see fuzzymeter_sub.c)

• If diagnostic flag is YES (calc_watch_fuzzymeter could not successfully

calculate a fuzzy metering rate)

• SMG$ERASE_DISPLAY — Erase old I/O data

• SMG$ERASE_DISPLAY — Erase old rule data

• Convert the rule weights from floats to integers to use them as data validity

flags. (The rule weights were set to zero by calc_watch_fuzzymeter if

their input data was bad)

• If the local occupancy input has good data

• Write the local occupancy and local speed data to the I/O window

• If the downstream input has good data, write the downstream

occupancy and downstream speed to the I/O window

• If the queue input has good data, write the queue data to the I/O window

• If the advance queue input has good data, write the advance queue data

to the I/O window

• Write the HOV data to the I/O window. (A zero HOV bypass volume

may mean that there was zero passage or that the data were bad.)

• Write diagnostic message to the diagnostic window

34

• Else (diagnostic flag was NO — calc_watch_fuzzymeter successfully

calculated a metering rate)

• SMG$ERASE_DISPLAY – erase diagnostic window

• Write data to I/O window

• Scroll old metering rate data on I/O window

• Write new metering rate data to I/O window

• Write rule weights to rule window

• Write rule outcomes to rule window

• Move cursor to the end of prompt message on prompt window

• Wait for start of watch_fuzzymeter

• SYS$WFLOR – Wait for start of watch_fuzzymeter

• SYS$READEF – Read condition code of start condition

• If interrupt bit was set

• Clear the TTY interrupt bit

• Associate to the TTY Reservation EFC

• Clear the TTY reservation bit

• Clear any outstanding TTY input

• SMG$DELETE_PASTEBOARD – unpaste all virtual displays and clear screen

35

• Cancel any outstanding input from the keyboard

• SMG$DELETE_PASTEBOARD – unpaste all virtual displays and clear screen

• Restore the saved TTY characteristics

Fuzzymeter_sub.c

Fuzzymeter_sub.c contains modules which are called from the main processes

fuzzymeter and watch_fuzzymeter. Watch_fuzzymeter displays fuzzymeter’s input,

internal calculations, and output for a specified metered lane. Ideally, these processes

would share identical modules to ensure that they use the same data and calculations.

However, this module sharing was not entirely feasible for a couple of reasons.

Watch_fuzzymeter does its calculation during a different time frame of the real-time data

cycle, so it must use indeces different than those of fuzzymeter for the recently scrolled

RTDB. We did not want to clutter up a global database by storing all of the internal

calculations for all ramp meters, nor did we want to slow processing time of the TAPS.

Instead, watch_fuzzymeter stores an index of pointers for each metered lane. When users

specify the metered lane that they want to examine, internal data are stored for only that

metered lane. In general, watch_fuzzymeter’s modules need to store additional information

in addition to that of fuzzymeter, but otherwise their modules are identical. Each row of

Table 8 list the parallel modules called from fuzzymeter and watch_fuzzymeter, along with

a brief overview. If you make a change to one of these fuzzymeter modules, be sure that

you examine the parallel watch_fuzzymeter module to see if it needs the change as well.

36

Table 8. Parallel modules called from Fuzzymeter and Watch_fuzzymeter

Fuzzymeter Modules Watch_fuzzymeter Modules Overview

Build_fuzzymeter_table Build_watch_fuzzymeter_table Builds of table of pointers to the RMDB and

RTDB data needed to calculate the metering rates

for each lane

Calc_fuzzymeter --

Calls calc_fuzzy_rate

Calc_watch_fuzzymeter --

 Calls calc_watch_fuzzy_rate

Obtains the inputs to the controller

Calc_fuzzy_rate --

Calls fuzzify, rules, and

defuzzify

Calc_watch_fuzzy_rate --

Calls fuzzify, watch_rules, and

defuzzify

Calculates the metering rate

Fuzzify Fuzzify Converts each crisp input into a set of fuzzy

classes

Rules Watch_rules Evaluates rule base

Defuzzify Defuzzify Converts a set of fuzzy metering rates to a single

numerical metering rate

37

Build_fuzzymeter_table — Parses the fuzzymeter equation file (which was

created by build_rmdb and must adhere to the format specified in the training manual,

Taylor and Meldrum, 2000) searches for the cabinet name in RMDB and station names in

RTDB, and writes the action codes and data pointers to fuzzymeter table. (See Table 9.)

 Initialize memory allocation for fuzzymeter table

 Write header to table: start table label, number of sets, table size, date/time

 Open fuzzymeter equation file

 Initialize counters and flags

 While not EOF, read line of fuzzy_meter.eqn (equation file)

 Get cabinet name at start of equation

 Initialize location to LOCAL

 Save pointer to beginning of set

 Initialize error flag to no error

 Find_fddb_cl_name — Search for cabinet name in Field Device Data Base

(FDDB) and return index

 Extract metered lane number from the cabinet:loop name

 If cabinet name is not in RMDB, write error message and set error flag

 If "FM" is not given after cabinet name to be fuzzy metered, write error message

and set error flag

38

 If an error occurred, send error message and search for beginning of next equation

 If more memory is needed to write next set, allocate additional memory

 Write set header to table: start set code, lane number, space for number of bytes in

set, pointer to cabinet in RMDB (for metered lane to be fuzzy metered)

 Get token from eqn_file

 While token is a delimiter (not end of equation)

 If token is `|', increment location

 Get next token. Expecting a station:loop name

 If a token is not returned

 Build_tap_error — station:loop name not found

• Set error flag

 Break out of while-loop to skip equation. (Error handling at end of while-

loop resets pointer to the beginning of set and looks for next equation.)

 If location is QUEUE, ADV_QUEUE, or HOV_BYPASS

 Parse token with strtok to get the station:loop name

 If station:loop name is not found, set error flag and break out of while-loop

to skip this equation

 Parse same token with strtok to get a number token which represents either

the number of samples to calculate input or the percentage of HOV bypass

volume adjustment applied to this lane

39

 If number token is not found, set error flag and break out of while-loop to

skip this equation

 Convert number of samples from ASCII to integer

 If number of samples is less then 128, convert it to an unsigned char (1

byte)

 Else number token is OK

• Build_tap_error — number of samples is too large

• Set error flag

• Break out of while-loop to skip this equation

• Else

• Store station:loop name

• If location is HOV_BYPASS

• If loop name is not of type “HP”

• Set error flag

• Break out of while-loop to skip this equation

 Write location code to table

 Search_rtdb_name_table — search for index to loop in RTDB

 If loop index is not found

 Build_tap_error – “Stn/Loop name is not in RTDB”

 Set error flag

40

 Break out of while-loop to skip this equation

• Else station/loop name is good

 Obtain offset in table for stn_loop in RTDB based on index

 Write offset to table

 If location is QUEUE, ADV_QUEUE, or HOV_BYPASS, write number of

samples or percentage of HOV bypass to table

 Get next token — expecting a delimiter or cabinet

 If next token is NULL (OK if EOF)

 build_tap_error — Null result when parsing fuzzy equation set error flag

 Set error flag

 Break out of while-loop to skip this equation

 End of while-loop that reads equation

 If location is less than ADV_QUEUE

 Point to set start to skip this equation because it does not have enough station

locations. (Fscanf has already grabbed the next token.)

 Else if no errors occurred (the equation is good)

 Increment the number of sets in the table

 Calculate the number of bytes in the set

 Write the number of bytes in set to table

41

 Else an error occurred during parsing (NULL fscanf result)

 Point to set start to skip this equation

 Get token to search for next equation

 End of while-loop to read file of equations

 Close fuzzy equation file

 Write number of sets and table size into table header

 Write table end label, check sum (calculate number bytes in table)

 Trim table size

 Return base address of table

42

Table 9. Description of the Fuzzy Table’s Layout in Memory

LABELS ITEM # BYTES DESCRIPTION
-- (begin table)
table_base-> code 1 FM_TABLE_START

ushort 2 number of sets
ulong 4 table size
date_time 8 struct system_time

-- (end of table header)
--
-- (beginning of sets)
set_start code 1 FM_SET_START

byte 1 lane_no -- which ramp lane to meter
(1, 2, or 3)

byte 1 # of bytes in set
ulong 4 col_ptr to cabinet in RMDB

(to get fuzzy parameters)
-- (end of a set header)
-- (begin local stations)

byte 1 LOCAL -- adjacent mainline station type
ushort 2 rtdb_offset to LOCAL station in RTDB

-- (repeat for each local input)
byte 1 DOWN -- downstream station type
ushort 2 rtdb_offset to downstream station in RTDB

-- (repeat for each downstream input)
byte 1 UP -- upstream station type
ushort 2 rtdb_offset to upstream station in RTDB

-- (end of upstream input)
byte 1 QUEUE -- ramp queue station type
ushort 2 rtdb_offset to queue loop in RTDB
byte 1 # of samples to calculate queue_occ

-- (repeat for each queue input)
byte 1 ADV_QUEUE -- station type
ushort 2 rtdb_offset to advance queue loop in RTDB
byte 1 # of samples to calculate adv_queue_occ

-- (repeat for each advance queue input)
byte 1 HOV_BYPASS – this input is optional
ushort 2 rtdb_offset to bypass loop in RTDB
byte 1 percentage of HOV bypass volume adjustment to apply

-- (end of HOV input)
-- (end of a set)
-- (begin next set)
Repeat for each set (every metered lane of every cabinet with fuzzy metering)
-- (end of all sets)
--
-- (label end of table)

code 1 TABLE_END
short 2 check sum -- # of bytes in table

-- (end of table)

43

Build_watch_fuzzymeter_table — This module is identical to

build_fuzzymeter_table, except that it stores an array of structures containing pointers

to the beginning of each set for every metered lane and then returns the number of sets.

Subsequently, the set number that the watch_fuzzymeter user chooses is the index to the

array of structures of pointers to access the specified data set.

 Initialize memory allocation for cabinet list

 Initialize memory allocation for fuzzymeter table

 Write header to table: start table label, number of sets, table size, date/time

 Open fuzzymeter equation file

 Initialize counters and flags

 While not EOF, read line of FUZZY_METER.EQN (equation file)

 Get cabinet name at start of equation

 Initialize location to LOCAL

 Save pointer to beginning of set

 Initialize error flag to no error

 Find_fddb_cl_name — Search for cabinet name in Field Device Data Base

(FDDB) and return index

 Extract metered lane number from the cabinet:loop name

 If cabinet name is not in RMDB, write error message and set error flag

44

 If "FM" is not given after cabinet name to fuzzy meter, write error message and set

error flag

 If an error occurred, send error message and search for beginning of next equation

 If more memory is needed to write next set, allocate additional memory

 Write set header to table: start set code, lane number, space for number of bytes in

set, pointer to cabinet in RMDB (for fuzzy parameters)

 Get token from eqn_file

 While token is a delimiter (not end of equation)

 If token is `|', increment location

 Get next token. Expecting a station:loop name

 If a token not returned

 build_tap_error — station:loop name not found

• Set error flag

 Break out of while-loop to skip equation. (Error handling at end of while

loop resets pointer to the beginning of set and looks for next equation)

 If location is QUEUE, ADV_QUEUE, or HOV_BYPASS

 Parse token with strtok to get the station:loop name

 If station:loop name is not found, set error flag and break out of while-loop

to skip this equation

45

 Parse same token with strtok to get a number token which represents either

the number of samples to calculate input or the percentage of HOV bypass

volume adjustment applied to this lane

 If number token is not found, set error flag and break out of while-loop to

skip this equation

 Convert number of samples from ASCII to integer

 If number of samples is less then 128, convert it to an unsigned char (1

byte)

 Else number token is OK

• Build_tap_error — number of samples is too large

• Set error flag

• Break out of while-loop to skip this equation

• Else

• Store station:loop name

• If location is HOV_BYPASS

• If loop name is not of type “HP”

• Set error flag

• Break out of while-loop to skip this equation

 Write location code to table

 Search_rtdb_name_table — search for index to loop in RTDB

46

 If loop index is not found

 Build_tap_error – “Stn/Loop name is not in RTDB”

 Set error flag

 Break out of while-loop to skip this equation

• Else station/loop name is good

 Obtain offset in table for stn_loop in RTDB based on index

 Write offset to table

 If location is QUEUE, ADV_QUEUE, or HOV_BYPASS, write number of

samples or percentage of HOV bypass to table

 Get next token — expecting a delimiter or cabinet

 If next token is NULL (OK if EOF)

 Build_tap_error — Null result when parsing fuzzy equation set error flag

 Set error flag

 Break out of while-loop to skip this equation

 End of while-loop that reads equation

 If location is less than ADV_QUEUE

 Point to set start to skip this equation because it does not have enough station

locations. (Fscanf has already grabbed the next token.)

 Else if no errors occurred (the equation is good)

47

 Increment the number of sets in the table

 Calculate the number of bytes in the set

 Write the number of bytes in set to table

• If necessary, get additional memory for the cabinet list

• Write the pointer of the set beginning to the cabinet list

 Else an error occurred during parsing (NULL fscanf result)

 Point to set start to skip this equation

 Get token to search for next equation

 End of while-loop to read file of equations

 Close fuzzy equation file

 Write number of sets and table size into table header

 Write table end label, check sum (calculate number bytes in table)

 Trim table size

 Return base address of table

48

Calc_fuzzymeter — When called from the main every 20 seconds,

calc_fuzzymeter processes the fuzzymeter table one line at a time (Table 9), obtaining

fuzzy parameters from RMDB and getting data from RTDB. After parsing a set (for a

metered ramp), it calls calc_fuzzy_rate, which returns a metering rate.

Calc_fuzzymeter writes it to the RMDB. (Rmdc_comm subsequently sends the new

data poll with these direct metering rates and the 170 bypasses local logic to directly

implement them.)

• For all data columns in RMDB

• Skip if data column for min, max, default or prot mask

• Initialize the fuzzy metering rate to 0 for lanes 1, 2, and 3. The 170 interprets 0 to

mean that fuzzy metering is disabled for that lane.

• Initialize pointer to beginning of fuzzy meter table

• Skip past table header

• While not end of table

• Save pointer to beginning of current set in table

• Get metered lane number from table

• Get bytes in set from table

• Get station:loop offset into RTDB

• Get pointer to data column in RMDB

49

• Use column pointer to get index to current cabinet

• Set permission flag equal to PermitFuzzyMr parameter from RMDB. If lane

number is not equal to 1, 2, or 3, log error and set permission flag to NO.

• If Permit Fuzzy Metering parameter is disabled,

• Skip this set and jump pointer to the next set in table

• Get action code that starts new set

• Continue to beginning of while-loop

• Get fuzzy parameter high and low range limits for local occupancy, local speed,

downstream occupancy, downstream speed, and upstream occupancy inputs.

• Get fuzzy parameter rule weights

• Get range limits for queue occupancy, advanced queue occupancy, and metering

rate. These names are lane specific, so only get the parameters for the current lane.

• Initialize the centroid and base width fuzzification parameters to their default values

that are provided with the globals at the beginning of fuzzymeter_sub.c. For the

inputs that use only one input class (these are DOWN_OCC, DOWN_SPEED,

QUEUE_OCC, and ADV_QUEUE_OCC), the base width of the utilized class is set

to 1 so that the class will encompass the entire dynamic range. The other inputs are

ignored by the controller for that input. If you want to modify the relative width of

the classes, do so by modifying the class base width here. If you want to modify

the relative positioning of the classes, do so by modifying the class centroids here.

However, it is not expected that this will be necessary for Seattle, as adjusting the

Low and High parameters is sufficient for solving nearly all problems regarding the

dynamic range of the classes.

50

• Get next action code

• Initialize data usable flag to YES

• Initialize bypass volume to 0

• While fetching and processing data from RTDB station:loops

(Note: Fuzzymeter does not initialize any data in the RTDB. It only fetches and

uses the data from the RTDB and RMDB. Calc_fuzzymeter prepares these

inputs to the controller.)

• Initialize number of good stn/loops for this station type to zero

• Initialize data usability flag to yes

• Initialize number of good station:loops for this data type to zero

• Initialize sum of volumes for this station type to zero

• Initialize sum of scan count for this station type to zero

• If action code is HOV_BYPASS

Number of samples used to calculate input is 6

• Else

Number of samples used to calculate input is 3

51

• Do-While same station type (action codes are the same)— loop is executed at

least once. For each time this loop is executed, one input to the fuzzy controller

is calculated. (See rules for writing fuzzy equations in training manual for

details)

• Get station:loop offset into RTDB from table

• If action code is QUEUE or ADV_QUEUE

Get number of samples used to calculate input

• If action code is HOV_BYPASS

Get percentage of HOV adjustment to lane

• For each sample needed to calculate input data

• Calculate pointer to RTDB cabinet from station:loop offset

• Unpack_rtdb_loop_stn data

• If data are good – this occurs when the number of loops is greater than

1 (this means that it's a station, not a loop) and the flag not equal to 0

(the station data are usable) OR if the number of loops is 1 (loop data

rather than station) and the flag is 1 (the loop data are good). Note:

These data have already been interpolated if it is necessary and possible.

• If action code is not DOWN

• Increment number of good stations used to calculate this input

• Increment number of total loops (over all stations) to calculate

this input

• Sum scan count

52

• Sum volume to later calculate speed

• Else action code is DOWN. (DOWN is handled differently than the

other locations because it uses the maximum occupancy and

associated speed rather than averaging all inputs)

• If this occupancy is the maximum of the downstream occupancy

inputs or if no other good data were found

• Set number of good stations to calculate this input to 1

• Set number of total loops for all stations at this location to be

the number of loops returned by unpack_rtdb_loop_stn

• Set sum of scan count to the scan count returned by

unpack_rtdb_loop_stn

• Set sum of volume to the volume count returned by

unpack_rtdb_loop_stn

• Set old action code to equal current action code

• Get next action code

• End of do-while loop to process stations of same type

• If more than one station/loop is good, calculate controller inputs

• Calculate average occupancy using scan count and total number of good

loops

• If location code < QUEUE (meaning that it is a mainline input)

53

Calculate average speed for that location using average volume and

occupancy

• Switch based on old action code (detector location)

• In LOCAL or DOWN case, enter the calculated occupancy and speed in

controller input array

• In UP case,

• Enter the calculated occupancy into controller input array for

upstream input

• If there were no usable local data

• Enter the upstream occupancy as the local occupancy

• Enter the upstream speed as the local speed

• Set data usable flag to YES

• In QUEUE or ADV_QUEUE case, enter the calculated occupancy in the

controller input array

• In HOV_BYPASS case, convert from vehicles summed over all

samples to vehicles/minute

• Else (data for this location are insufficient to calculate inputs) — Check to see if

the lack of data at this location makes the rule base incomplete. If the rule base

is incomplete, set the data_usable flag to NO so that local metering will be used

instead.

• Switch based on old action code (detector location)

54

• In LOCAL case,

Set data usable to NO_LOCAL. (A complete rule base requires this

input! Do not change this logic because the output of the fuzzy logic

controller may not be undefined otherwise. The NO_LOCAL state

differs from the NO state in that there is still the possibility that the

upstream input will be a good substitute for the local input. In this

event, the data usable state would be returned to YES.)

• In DOWN case,

Set the rule weights to zero for the rules that use downstream inputs.

(The rule base does not require this input for completeness.)

• In UP case,

Set the rule weights to zero for the rules that use this input. (By default,

this input is not used for upstream rules, but only as a substitute for

the local data in the event they are bad.)

• In QUEUE case,

• Increase the advance queue rule weight by the queue rule weight to

compensate for the bad queue data

• Set the queue rule weight to zero

• In ADV_QUEUE case,

• If the queue weight is zero (meaning that there are no usable ramp

inputs), set the data usable flag to NO. (The fuzzy controller

requires this input so that the resulting fuzzy metering rate is not too

restrictive.)

55

• Else (the queue input was OK), set the advance queue rule weight to

zero

• In HOV_BYPASS case,

Set the HOV bypass volume to zero. (With this, no HOV bypass

adjustment will occur, which is not a problem.)

• End of while-loop to process a set (an equation for 1 metered lane)

• If data are usable to calculate the metering rate at this ramp (sufficient data set

contains a local input and at least one ramp queue input)

• Calc_fuzzy_rate given the real-time data, fuzzification parameters, and rule

weights

• Do HOV bypass adjustment — subtract HOV bypass volume times the

percentage of HOV adjustment for that lane from the metering rate

• If adjusted metering is smaller than fuzzy minimum metering rate,

Set it to the fuzzy minimum metering rate

• If the metering rate is greater than 25.5, it won't fit into 1 byte,

Write error message with log_tms_event and disable fuzzy metering rate to 0

• Convert the metering rate from a float to an unsigned character byte

• Write the metering rate for that lane to _MeterRateLane1, _MeterRateLane2, or

_MeterRateLane3 in the RMDB

• Else if data are not usable to calculate the metering rate at this ramp

• Write error message with log_tms_event

56

• End of while-loop to process table

calc_watch_fuzzymeter — This module is identical to calc_fuzzymeter

computationally, but differs in functionality. It returns a diagnostic flag indicating whether

or not it was possible to calculate a metering rate. It returns a pointer to the fuzzymeter

table and a diagnostic message. In global memory, it stores the controller inputs from the

RTDB. Because the RTDB is scrolled after the TAPS (of which fuzzymeter is one), the

indexing to access the RTDB for calc_watch_fuzzymeter varies from that of

calc_fuzzymeter. Instead of processing all sets within the fuzzy meter table, it only

processes one designated set. Instead of implementing the calculated metering rates, it

stores them in global memory for watch_fuzzymeter to access. Instead of calling

calc_fuzzy_rate, it calls calc_watch_fuzzy_rate.

• Initialize diagnostic flag to NO. (This flag indicates whether a rate could

successfully be calculated.)

• Initialize pointer to beginning of set to be observed

• Get metered lane number from table

• Get bytes in set from table

• Get station:loop offset into RTDB

• Get pointer to data column in RMDB

• Use column pointer to get index to current cabinet

• Set permission flag equal to PermitFuzzyMr parameter from RMDB. If lane

number is not equal to 1, 2, or 3, set permission flag to NO.

57

• If Permit Fuzzy Metering parameter is disabled,

• Set diagnostic flag to YES

• Put diagnostic message into diagnostic message string

• Get fuzzy parameter high and low range limits for local occupancy, local speed,

downstream occupancy, downstream speed, and upstream occupancy inputs.

• Get fuzzy parameter rule weights

• Get range limits for queue occupancy, advanced queue occupancy, and metering

rate. These names are lane specific, so only get the parameters for the current lane.

• Initialize the centroid and base width fuzzification parameters to their default values,

which are provided with the globals at the beginning of fuzzymeter_sub.c. For the

inputs that only use one input class (these are DOWN_OCC, DOWN_SPEED,

QUEUE_OCC, and ADV_QUEUE_OCC), the base width of the utilized class is set

to 1 so that the class will encompass the entire dynamic range. The other inputs are

ignored by the controller for that input. If you want to modify the relative width of

the classes, do so by modifing the class base width here. If you want to modify the

relative positioning of the classes, you can do so by modifying the class centroids

here. However, it is not expected that this will be necessary for Seattle, as

adjusting the input or output’s Low and High parameter is sufficient for solving

nearly all problems regarding the dynamic range of the classes.

• Get next action code

• Initialize data usable flag to YES

• Initialize bypass volume to 0

58

• While fetching and processing data from RTDB station:loops

(Note: Watch_fuzzymeter does not initialize any data in the RTDB. It only fetches

and uses the data from the RTDB and RMDB. Calc_watch_fuzzymeter

prepares these inputs to the controller.)

• Initialize number of good stn/loops for this station type to zero

• Initialize data usability flag to YES

• Initialize number of good station:loops for this data type to zero

• Initialize sum of volumes for this station type to zero

• Initialize sum of scan count for this station type to zero

• If action code is HOV_BYPASS

number of samples used to calculate input is 6

• Else

number of samples used to calculate input is 3

• Do-While same station type (action codes are the same)— Loop is executed at

least once. For each time this loop is executed, one input to the fuzzy controller

is calculated. (See rules for writing fuzzy equations in training manual for

details.)

• Get station:loop offset into RTDB from table

• If action code is QUEUE or ADV_QUEUE

Get number of samples used to calculate input

• If action code is HOV_BYPASS

59

Get percentage of HOV adjustment to lane

• For each sample needed to calculate input data

• Calculate pointer to RTDB cabinet from station:loop offset

• unpack_rtdb_loop_stn data

• If data are good — This occurs when the number of loops is greater

than 1 (meaning that it is a station, not a loop) and the flag is not equal

to 0 (the station data are usable) OR if the number of loops is 1

(meaning that the data are loop data rather than station data) and the flag

is 1 (the loop data are good). Note: These data have already been

interpolated if it is necessary and possible

• If action code is not DOWN

• Increment number of good stations used to calculate this input

• Increment number of total loops (over all stations) to calculate

this input

• Sum scan count

• Sum volume to later calculate speed

• Else action code is DOWN. (DOWN is handled differently than the

other locations because it uses the maximum occupancy and

associated speed rather than averaging all inputs)

• If this occupancy is the maximum of the downstream occupancy

inputs or if no other good data were found

• Set number of good stations to calculate this input to 1

60

• Set number of total loops for all stations at this location to be

the number of loops returned by unpack_rtdb_loop_stn

• Set sum of scan count to the scan count returned by

unpack_rtdb_loop_stn

• Set sum of volume to the volume count returned by

unpack_rtdb_loop_stn

• Set old action code to equal current action code

• Get next action code

• End of do-while loop to process stations of same type

• If more than one station/loop are good, calculate controller inputs

• Calculate average occupancy using scan count and total number of good

loops

• If location code < QUEUE (meaning that it is a mainline input)

Calculate average speed for that location using average volume and

occupancy

• Switch based on old action code (detector location)

• In LOCAL or DOWN case, enter the calculated occupancy and speed in

controller input array and store these inputs in global watch data set

• In UP case,

61

• Enter the calculated occupancy into controller input array for

upstream input and store these inputs in global watch data set

• If there were no usable local data

• Enter the upstream occupancy as the local occupancy and store

this input in global watch data set

• Enter the upstream speed as the local speed and store this input

in global watch data set

• Set data usable flag to YES

• In QUEUE or ADV_QUEUE case, enter the calculated occupancy in the

controller input array and store these inputs in global watch data set

• In the HOV_BYPASS case, convert from vehicles summed over all

samples to vehicles/minute and store this input in global watch data set

• Else (data for this location are insufficient to calculate inputs) — Check to see

whether the lack of data at this location makes the rule base incomplete. If the

rule base is incomplete, set the data_usable flag to NO so that local metering

will be used instead.

• Switch based on old action code (detector location)

• In LOCAL case,

Set data usable to NO_LOCAL. (A complete rule base requires this

input! Do not change this logic because the output of the fuzzy logic

controller may not be undefined. The NO_LOCAL state differs from

the NO state in that there is still the possibility that the upstream input

62

will be a good substitute for the local input. In this event, the data

usable state would be returned to YES.)

• In DOWN case,

Set the rule weights to zero for the rules that use downstream inputs,

(the rule base does not require this input for completeness)

• In UP case,

Set the rule weights to zero for the rules that use this input. (By default,

this input is not used for upstream rules, but only as a substitute for the

local data in the event they are bad).

• In QUEUE case,

• Increase the advance queue rule weight by the queue rule weight to

compensate for the bad data

• Set the rule weight to zero for the rule that uses this input

• In ADV_QUEUE case,

• If the queue weight was zero (this means that there are no usable

ramp inputs), set the data usable flag to NO. (The fuzzy controller

requires this input so that the resulting fuzzy metering rate is not too

restrictive.)

• Else (the queue input was OK), set the rule weight to zero for the

rule that uses this input

• In HOV_BYPASS case,

Set the HOV bypass volume to zero. (With this, no HOV bypass

adjustment will occur, which is not a problem.)

63

• End of while-loop to process a set (an equation for 1 metered lane)

• If data are usable to calculate the metering rate at this ramp (sufficient data set

contains a local input and at least one ramp queue input)

• Calc_watch_fuzzy_rate given the real-time data, fuzzification parameters,

and rule weights

• Do HOV bypass adjustment — subtract HOV bypass volume times the

percentage of HOV adjustment for that lane from metering rate

• If adjusted metering is smaller than fuzzy minimum metering rate

Set it to the fuzzy minimum metering rate

• If the metering rate is greater than 25.5, it won't fit into 1 byte

Write diagnostic message to diagnostic message string and set diagnostic flag to

YES

• Convert the metering rate from a float to an unsigned character byte

• Write the metering rate for that lane to watch data set (not to the RMDB)

• Else if data are not usable to calculate the metering rate at this ramp

Write diagnostic message to diagnostic message string and set diagnostic flag to

YES

• Return the diagnostic flag

64

calc_fuzzy_rate — This function returns a metering rate given inputs to the fuzzy

controller. If the fuzzy ramp metering algorithm were ported to other systems, this

function and those that it calls would be used because they contain the fuzzy logic

controller. All other functions interface the fuzzy logic controller with the TSMC and may

be unique to this TSMC.

• Fuzzify – Returns the fuzzy inputs given the crisp inputs and fuzzy parameters. This

function translates each input into a set of five fuzzy classes.

• Rules – Evaluates the rules given the fuzzy inputs and rule weights. Returns the fuzzy

metering classes.

• Defuzzify – Converts the fuzzy metering rates into a single numerical metering rate.

calc_watch_fuzzy_rate — This function is identical to calc_fuzzy_rate

except that it calls watch_rules rather than rules.

• Fuzzify – Returns the fuzzy inputs given the crisp inputs and fuzzy parameters. This

function translates each input into a set of five fuzzy classes.

• Watch_rules – Evaluates the rules given the fuzzy inputs and rule weights. Returns

the fuzzy metering classes.

• Defuzzify –Given the fuzzy metering rates, returns a single numerical metering rate.

65

Fuzzify — Converts each numerical input into a set of five fuzzy classes, although

some inputs do not use all five classes. For each input, it calculates the array of fuzzy

classes that indicate on a scale of 0 to 1 the degree to which each class is true. Note: By

adjusting the Low and High parameters, the dynamic range of the class can be modified.

We found that it was unnecessary to change the relative base width and relative positioning

between the fuzzy classes. Thus, inputs use the compiled defaults for the triangle base

widths and normalized centroids. If you find the need to modify the relative positioning or

relative shape of the fuzzy classes for an input, this can be done in calc_fuzzymeter and

calc_watch_fuzzymeter. For further details regarding how to adjust these classes, see

the training manual, Taylor and Meldrum, 2000.

• For each input

• If high dynamic limit is lower than the low dynamic limit

Write error message with log_tms_event

• Normalize the raw input from the parameter (Low, High) range to the (0,1) range.

All calculations internal to the fuzzy logic controller are performed on the

normalized scale to simplify calculations. In defuzzify, the resulting normalized

metering rate is rescaled to the (MeterRateLow, MeterRateHigh) range.

• Calculate very small fuzzy class. The class is 1 if the rescaled input is less than 0.

The class is 0 if the rescaled input is greater than the base width for the very small

class. In between, it's a linear relationship.

• For small, medium and big classes,

Calculate fuzzy input — It's a triangular class

66

• Calculate very big fuzzy class — The class is 1 if the rescaled input is greater than

1. The class is 0 if the rescaled input is greater than 1 minus the base width for the

very big class. In between, it's a linear relationship

Rules — Evaluate each rule and return a set of five fuzzy classes for the metering

rate given the fuzzy inputs and rule weights.

• Evaluate each rule given the fuzzy input. The degree of the rule outcome is equal to the

degree of activation of the rule premise. (A logical AND between two premises takes

the minimum of degrees in the premise.)

• Multiply each rule outcome by its rule weight

• Calculate the weighted sum of rule outcomes for each class to get the aggregated

metering fuzzy classes

Watch_rules — Identical to rules except that it stores the rule outcomes in

watch data set to be displayed by watch_fuzzymeter

• Evaluate each rule given the fuzzy input. The degree of the rule outcome is equal to the

degree of activation of the rule premise. (A logical AND between two premises takes

the minimum of degrees in the premise.)

• Store rule outcomes in watch data set

• Multiply each rule outcome by its rule weight

• Calculate the weighted sum of rule outcomes for each class to get the aggregated

metering fuzzy classes

67

Defuzzify — Use discrete fuzzy centroid to convert set of fuzzy metering rates to

a single numerical metering rate given the aggregate fuzzy metering rate classes and the

parameters for the metering rate classes.

• For each fuzzy class of metering rate

• Calculate the implicated area of the fuzzy rule outcome. (See documentation in the

training manual for details. This is the fuzzification process in reverse.)

• Calculate the centroid of the implicated area of the fuzzy class

• Accumulate numerator sum for the discrete fuzzy centroid— the area of fuzzy class

times the centroid of fuzzy class times the sum of weighted rule outcomes for that

class

• Accumulate denominator sum for discrete fuzzy centroid — the area of fuzzy class

times the sum of weighted rule outcomes for that class

• If the denominator is too small

Write error message with log_tms_event

• If MeterRateHigh is not greater than MeterRateLow for the metering rate dynamic range

limits

(Note: The resulting metering will be inside these limits because the centroid of the

end triangles is inside the Low and High limits by 1/3 of the base width.)

Write error message with log_tms_event

• Calculate the metering rate = num/den and rescale from the (0,1) range to the (Low,

High) range

• If metering rate is not within the (Low, High) range

Write an error message with log_tms_event

68

• Return metering rate

Fuzzy.h

Fuzzy.h contains definitions, structures, function prototypes, and compile options

for fuzzymeter and watch_fuzzymeter. The compile options FUZZY_DEBUG,

FUZZY_LOG, METER_LOG, and OBSERVE_ONLY warrant discussion.

The FUZZY_DEBUG option is no longer supported in the source code. It was

used to create a test version of fuzzymeter. The test version of fuzzymeter read the

fuzzy_meter.eqn file and built the fuzzy table in memory. This debug version was a useful

tool for finding bugs in parsing the file or building the table. It conveniently stood alone

and had no impact on operations because it did not calculate metering rates. For

programmers who make future additions or modifications to a database or to TAPS, this

technique is recommended.

The FUZZY_LOG option is supported in fuzzymeter.c and fuzzymeter_sub.c. If

FUZZY_LOG is defined, a logging version of fuzzymeter.exe will be created. It will log

the inputs, fuzzy classes, rule outcomes, and resulting metering rates for all fuzzy enabled

(with PermitFuzzyMr) ramp meters to a file called fuzzymeter.log. Although this logging

capability works, this version would produce TAPS time-outs now that we have so many

ramp meters using fuzzy metering, preventing the fuzzy metering rates from being

calculated and implemented in the allowable time. Thus, it is not recommended that this

option is used because of the additional CPU that it requires. If you find that you need this

capability, the logging technique would need to be rewritten in a fashion similar to that of

log_tms_event, in which the message is put on a queue to be handled. This capability

was originally created in anticipation of the need for off-line analysis of the internal

calculations of fuzzymeter in order to optimize its performance. We found that we did not

need this capability to the extent expected because of the capabilities of watch_fuzzymeter.

69

Through watch_fuzzymeter, we were able to observe all of these data real-time and

optimize the performance of fuzzymeter.

If METER_LOG is defined, a version of fuzzymeter.exe will be produced that logs

the cabinet name, lane status, and the metering rates as returned from the 170 by all actively

metered cabinets to a file called meter.log. Although this capability worked fine prior to

implementing system-wide with fuzzy metering, at this time, it is expected that this option

may require more time to execute fuzzymeter than it is allocated. For this reason, it is not

recommended that this option is used because it may prevent fuzzy metering rates from

being implemented properly during TAPS time-outs. If you find that you need this

capability, the meter logging capability would need to be rewritten in a fashion similar to

that of log_tms_event, in which the message is put on a queue to be handled. However,

if the reason you want the 170-returned metering rates is for analytical purposes, you may

be better off using the passage rate instead (which can easily be retrieved through CDR).

The passage rate is the effective metering rate.

If OBSERVE_ONLY is defined, a version of fuzzymeter.exe will be produced that

does not execute the metering rates produced by fuzzy metering. We found this option to

be invaluable for initial deployment of the Fuzzy Logic Ramp Metering Algorithm. With

this option, we were able to compare the rates produced by the Fuzzy Metering Algorithm

to those produced by other ramp metering algorithms given the same real-time data. We

were able to do initial tuning with this technique without impacting operations in any way.

However, the usage of this compile option is no longer recommended. When this option is

used, no fuzzy metering rates are executable on the system. Because many ramps have not

been thoroughly tested for any other algorithms, operations would suffer from the non-

optimal metering rates produced by other ramp metering algorithms.

70

Configuration Management

MMS files (VMS makefiles) were created for all TMS executables (Table 10). With

the new MMS files, maintenance of the proper configuration is feasible. For all MMS

files, executables can be produced in a bubble environment by redefining TMS_CODE and

TMS_RUN (see Integration Procedure).

71

Table 10. Summary of New MMS Files for Configuration Management

Tms_lib.mms Updates object library for ccb_subs.c crack_fp_msg.c,

dump_mem.c, event_log_sub.c, fddb_lib.c, find_first_last.c,

fmdb_lib.c, format_db_lib.c, format_el_msg.c, global_sub.c,

intlk_queue.c. kb_func.c, link_sub.c, logical_name.c, mailbox.c,

pack_lib.c, proc_cntrl.c, rtdb_lib.c, sched_lib.c, skel_sub.c,

table_sub.c, tap_sub.c, tt_func.c, uaf_sub.c, utility_func.c,

vms_lib.c, tms_comm_sub.c, misc_func.c, sort_lib.c,

add_64.mar, bit_test.mar, calc_crc_16.mar, jhcbdef.mar,

jhbfdef.mar, find_driver.mar, switch_driver.mar, init_driver.mar,

driver_connected.mar

Cctvdb.mms Updates build_cctvdb.exe, patch_cctvdb.exe, test_cctvdb.exe,

del_cctvdb.exe

Gbldb.mms Updates build_gbldb.exe, patch_gbldb.exe, test_gbldb.exe,

del_gbldb.exe

Gcdb.mms Updates build_gcdb.exe, patch_gcdb.exe, test_gcdb.exe,

del_gcdb.exe

Oprtvdb.mms Updates build_oprtvdb.exe, patch_oprtvdb.exe, test_oprtvdb.exe,

del_oprtvdb.exe

Rmdb.mms Updates build_oprtvdb.exe, patch_oprtvdb.exe, test_oprtvdb.exe,

del_oprtvdb.exe

Scheddb.mms Updates build_rmdbdb.exe, patch_rmdbdb.exe, test_rmdbdb.exe,

del_rmdbdb.exe

Vaxportdb.mms Updates build_vaxportdbdb.exe, patch_vaxportdbdb.exe,

test_vaxportdbdb.exe, del_vaxportdbdb.exe

72

Vmsdb.mms Updates build_vmsdbdb.exe, patch_vmsdbdb.exe,

test_vmsdbdb.exe, del_vmsdbdb.exe

Wfmdb.mms Updates Wfmdb.exe

Wrtdb.mms Updates Wrtdb.exe

Rt.mms tms_startup.exe, tms_shutdown.exe, build_fmdb.exe,

build_rtdb.exe, Updates dumydata.exe, event_logger.exe,

fmdb_aggr.exe, fmdb_archiver.exe, build_rtdb.exe,

dumydata.exe, event_logger.exe, fmdb_archiver.exe,

rt_skeleton.exe, stn_aggr.exe, fuzzymeter.exe,

watch_fuzzymeter.exe, bottleneck.exe, actv_anal.exe,

inc_detect.exe, snap_loop_err.exe

Noaa_monitor.mms Updates noaa_monitor.mms

Upi_xmit.mms Updates upi_xmit.mms

Opc_comm.mms Updates multi_opc_comm.exe and test_opc_comm.exe

Rmdc_comm.mms Updates multi_rmdc_comm.exe and test_rmdc_comm.exe

Vms_comm.mms Updates multi_vms_comm.exe and test_vms_comm.exe

Util.mms Updates crack_fmdb_dailyfil.exe, crack_fmdb_namefile.exe,

crack_fmdb_snapshot.exe, watch_bottleneck.exe,

watch_fmdb.exe, watch_rmdc.exe, watch_actv_anal.exe, and

mon_event_log.exe

Tmsuw.mms Updates tmsuw.exe

Tmsuw.opt Links in libraries needed for tmsuw.exe

Get_20_sec.mms Updates Start_20_sec.exe, Get_20_sec_data.exe,

Edit_20_sec.exe, Crack_20_sec_data.exe, Test_20_sec_data.exe

Tms.mms Updates all executables.

73

Edit_20_sec.c

Edit_20_sec.exe was created for users who wish to automatically collect specified

20-second data for weekday metering periods. This process automatically checks the

time in order to know when to execute start_20_sec, which starts get_20_sec_data. To

use this, the user must specify the desired collection times and desired loops/stations for

the morning data in “am.input.” The user must specify the desired collection times and

desired loops/stations for the afternoon data in “pm.input.” Using this information along

with the current time and date, edit_20_sec automatically rewrites get_20_sec_data’s

input file with the date, start time, stop time, and data to collect for each metering period.

At this time, files produced are written to the test executable directory in taylorc’s

account. However, extensive usage of this software would require the implementation of

some data file management, which was beyond the scope of this project.

Prior to this project, the 20-second data collector was not usable because WSDOT

could not interpret the binary files produced. Although the Washington State

Transportation Center (TRAC) contracted HNTB to write software to utilize these binary

files, WSDOT subsequently lost the executable that did this interpretation. (It would

probably be fairly easy to rewrite this software.) In this project, we made a slight

modification to get_20_sec.c to create a usable version of get_20_sec.c With a simple

definition of GET_20_LOG, get_20_sec.c now produces ASCII data files. Because

get_20_sec.c and start_20_sec_data.c were not previously documented, they are outlined

here.

74

Get_20_sec.c is started from start_20_sec_data.c, which stands alone. In

start_20_sec_data.c, start_process calls SYS$CREPRC to start main get_20_sec.

Get_20_sec reads the desired stations from input file “get_20_sec_data.input.” If

GET_20_LOG is defined, it writes to an ASCII log file. (A sample ASCII file name is

980827_095300_20_SEC.LOG.) Ifdefs have been added to specify whether to write to

a binary data file. (A sample binary file name is 980827_095300_20_SEC.DAT.)

Start_20_sec_data calls the following functions:

 Connect_to_mailbox

 Map_to_RTDB

 Load_get_20_name_table

 Calc_num_data_blocks

 Check_date_time

 Read_get_20_input_file

 Write_file_header

 Dump_file_header — writes to log file

 Dump_get_20_name_table — writes to log file

 Collect_20_sec_data

Get_20_sec_sub.c calls the following functions:

 Dump_file_header — prints file header to output file

75

 Dump_get_20_name_table — prints name, type, size, and offset of data to

output file

 Fprintf(out_file, "%16.16s %02x ", name_ptr->name, type);

 Fprintf(out_file, "[LOOP]") or Station, speed trap, etc

 Fprintf(out_file, " %8d", rtdb_offset[i]);

 Crack_date_time_stamp — prints beginning month, day, year, hour, minute,

second to output file. Called from collect_20_sec_data. Prints end month, day,

year, hour, minute, second to output file in the following format:

02d/%02d/%04d+%02d:%02d%:%02d->%02d:%02d:%02d\n"

 Crack_rtdb_data — prints data to output file. Called from

collect_20_sec_data and writes data in the following format:

 Fprintf(out_file," %16.16s %02x ", name_ptr->name, type);

 Fprintf(out_file," %16.16s %02x ", name_ptr->name, type);

 Fprintf(out_file, "V=%3d S=%4d O=%5.1f F=%d I=%d n=%d\n",

 volume, scan_count, occupancy, flag, inc_det, n_loops);

Sample output of log file, not including headers

09/01/1998+14:31:40->14:31:59

 ES-TD4R:MMN___1 50 [LOOP]V= 0 S= 0 O= 0.0 F=0 I=0 n=0

 ES-TD4R:MMN___2 50 [LOOP]V= 0 S= 0 O= 0.0 F=0 I=0 n=0

 ES-TD4R:MMN___3 50 [LOOP]V= 0 S= 0 O= 0.0 F=0 I=0 n=0

 ES-TD4R:_MNLA_1 50 [LOOP]V= 0 S= 0 O= 0.0 F=0 I=0 n=0

 ES-TD4R:_MN_I_1 50 [LOOP]V= 0 S= 0 O= 0.0 F=0 I=0 n=0

76

SOFTWARE TESTING

Because no major changes had been made to the original source code prior to the

implementation of the Fuzzy Logic Ramp Metering Algorithm, it was necessary to develop

a procedure to do this. With a critical real-time system such as the TMS software, it was

important to integrate the software in such a way as to minimize the risks of TMS

downtime, software bugs, and configuration management problems. Software quality tests

were developed and used to verify that the software retained its old functionality while

performing its new functionality.

INTEGRATION PROCEDURE

The quality of new and modified software was thoroughly tested prior to on-line

implementation to reduce the risk of bugs. We did this by first testing the software on a

separate microVAX computer that had duplicate software running in real time, but was

unconnected to any field devices. In gradual steps toward implementation on the real-time

system, we used a “bubble environment” in which the original executables were

undisturbed and could always be recreated, and the new executables were always created

with the latest source code. In this manner, the risk of the new software was minimized

because we could always return to the old software.

With multiple programmers working on various aspects of the code, it was essential

that we never produced executables from incompatible versions of the source code. To

prevent problems with configuration management, we assigned domains to each

programmer. Lanping Xu was assigned to system administration, opc_comm and to

entering the files into CMS once they had passed all software tests. Harriette Lilly was

assigned to vms_comm and vmsdb. Cynthia Taylor was assigned to rt_skeleton, rmdb,

and rmdc_comm. Mark Morse was assigned to the 170 code. If programmers wanted to

alter code outside their domain, they had to do it through the programmer of that domain.

77

With this technique, we were aware of any code incompatibility issues. We coordinated

our implementation and testing schedules through daily communication. This degree of

coordination was necessary because of the sharing of test beds and the necessity that only

one programmer implement changes at a time. We only implemented one programmer’s

changes at a time in order to discern the cause of any problems that arose and to prevent

improper software configurations.

With these risk management issues in mind, the following software integration

procedure was developed:

1) Develop a list of regression tests to be performed that verify that the new software

still has the functionality of the old software.

2) Develop a list of tests to verify the new functionality of the software.

3) Perform a file comparison between the new source code and the current source code

from which the executables that are currently operating on the real-time system were

created. Merge the changes with the current source code to prevent any software

configuration problems.

4) Create a test code directory in which only the new or modified files reside. Define

the TMS_CODE path name such that the compiler first searches in the test directory

for the source code, and then searches in the official source code directory if it

cannot find the file in the test directory. In this manner, the executables will be

created from the latest files, reducing the risk of software configuration problems.

Another advantage of this “bubble” environment is that the original executables can

always be reproduced from the old source code by redefining the tms_code path.

5) Copy the MMS files (VMS makefiles) into the test code directory. Change the

specification of the executable directory from TMS_RUN to TMS_PRIMAL. With

this technique, the new executables are placed in their own test directory,

TMS_PRIMAL. In the event of a software problem, the system can be restarted

from the unaffected original executable, TMS_RUN.

78

6) Compile the code described in the bubble environment of steps 3-5 to produce the

new executables.

7) Copy the executables produced in step 6 to a separate test computer that duplicates

the real-time environment. We used a microVAX for this, complete with a TMS

console and test 170.

8) Perform the tests in steps 1-2 to verify the software quality.

9) If there are no errors in step 8, run the new executables in the TMS_PRIMAL

directory on the real time system. If a problem is encountered, the original system

can be restarted from the TMS_RUN directory.

10)Perform the tests in steps 1-2 to verify the software quality.

11)If there are no problems with step 10, check in the new source code with the

Configuration Management Software (CMS). This procedure will put the new

source code into the current source code directory. At this point, the bubble

environment of steps 3-5 is no longer necessary. Compiling directly from the

source code directory will produce the new executables in the tms_run directory.

We used this procedure both for the implementation of the Fuzzy Logic Ramp

Metering Algorithm and for the implementation of new VMS communications protocol.

The procedure was highly successful. We did not have any downtime due to the

implementation of the Fuzzy Logic Ramp Metering Algorithm, nor did the new code from

this project cause bugs that impacted operations.

Once the software quality had been established, fuzzymeter was field tested in a

procedure with gradual steps toward full deployment. A compile feature of fuzzymeter

called observation mode (see fuzzy.h) allowed us to produce fuzzy metering rates based on

real-time field data and observe the fuzzy metering rates without implementing them. With

this feature, we compared the fuzzy metering rates to the metering rates produced by the

other ramp metering algorithms. This feature proved to be very useful: we were able to do

preliminary tuning of the fuzzy ramp metering algorithm prior to field deployment. For

79

further details of the field testing plan, see the “Evaluation of a Fuzzy Logic Ramp Metering

Algorithm: A Comparative Study Between Three Ramp Metering Algorithms used in the

Greater Seattle Area” (Taylor and Meldrum, 2000).

RESULTS OF REG RESSION TESTING

Regression testing was performed to ensure that no old functionality was lost with

the new software changes. The regression testing encompassed all processes on the VAX,

including rmdb, build_all_db, fmdb, rtdb, rmdc, rmdc_comm, opc_comm, vms_comm,

noaa_monitor, cctv, mon_event_log, log files, incident_detect, and tmsuw. All tests

achieved the desired result.

Rmdb

The following tests were successfully performed on the new RMDB software to

verify the old functionality of the RMDB:

1) Viewed RMDB from patch_rmdb and verified that all values were displayed

correctly.

2) Verified that compiled defaults appeared correctly on the TMS console after start-

up. The parameter values correctly matched the compiled defaults in the cases

where they were not overridden in the rmdb_input.fil

3) Verified that parameters in rmdb_input.fil were correctly updated in the database,

overwring the compiled defaults as intended.

4) Verified that we can change a value from patch_rmdb.

5) Verified that all 287 columns were successfully displayed from patch_rmdb.

Build_all_db

We verified that all equations were created correctly when building all databases

with the new software. We compared the equations produced by the new software in the

TMS_PRIMAL directory to those created by the old software in the TMS_RUN directory

when given identical input files. The output files produced (including actv_anal.eqn,

80

inc_det.eqn, stn_aggr.eqn, and btl_neck.eqn) were identical between the old and new

software.

Fmdb

1) Compared the 5-minute aggregation using the new and old versions of

watch_fmdb. All 287 Ramp Meter/Data Collectors were shown with the new

watch_fmdb, and the data were the same for both versions.

2) Watch_fmdb was used to check station aggregation on the following test cases:

• ES-710R:_MN_Stn=_MN___1+_MN___2+_MN___3

The station volume = 120+102+124 = 346. The hand calculation matched that

shown in watch_fmdb.

• ES-710R:MMS_Stn=MMS___1+MMS___2+MMS___3

The station volume = 102+124+117=343. The hand calculation matched that

shown in watch_fmdb.

3) Used wfmdb.exe to verify that data looked valid.

4) Tested the validity of archived data. Compared real time data viewed with

watch_fmdb for loops, stations, and speed traps with the archived data viewed

from CDR. For ES-516R at 13:10, there were no discrepancies. Compared real-

time data viewed with wfmdb for loops, stations, and speed traps with the archived

data viewed from CDR. For ES-726R at 12:55, there were no discrepancies.

Rtdb

1) Checked the accuracy of 20-second station aggregation, using wrtdb.exe to

observe the loop and station data.

• ES-710R:_MN_Stn=_MN___1+_MN___2+_MN___3

Station volume = 8+10+6=24. Wrtdb matched the hand calculation.

81

Station occupancy =(6.8+12.1+12.5)/3=31.4/3=10.5 Wrtdb matched the hand

calculation.

• ES-710R:MMS_Stn=MMS___1+MMS___2+MMS___3

Station volume = 8+9+11=28. Wrtdb matched the hand calculation.

Station occupancy = (15.6+10.1+13.3)/3=39.0/3=13.0 Wrtdb matched the

hand calculation.

2) Verified that the 170s returned the data correctly and that the data were properly

placed into the RTDB.

3) Verified that the FLOW map on the WSDOT web page properly received the data.

Rmdc

We conducted tests to verify the proper operation of the metering algorithm through

the use of watch_rmdc, TMS, and the 170 test rack:

1) We verified that the local algorithm worked properly when no queue override

conditions were present. The proper local lane status and other metering data

appeared on the operator console. The 45th St. southbound ramp was metering at

16.0 VPM when the mainline occupancy was 15% and the mainline speed was 33

MPH.

2) We verified that the local algorithm worked properly when queue override

conditions were present. The override lane status appeared in the TMS console for

lanes 1, 2, and 3 when the 170 test rack’s queue occupancy value exceeded the

queue occupancy threshold for the necessary time duration.

3) We verified that the local algorithm worked properly when the advance queue

override conditions were present. The advance override lane status appeared in the

TMS console for lanes 1, 2, and 3 when the test rack’s advance queue occupancy

value exceeded the advance queue occupancy threshold for the necessary time

duration.

82

4) We verified that the volume adjustment occurred when the passage rate exceeded

the metering rate on the test rack, causing the metering rate to remain at its minimum

metering rate of 5 VPM.

Rmdc_comm

We tested the old functionality of rmdc_comm, which involves communications

between the VAX and 170.

1) We verified that Lane Parameters 1, 2, and 3 were sent to the VAX through

opc_comm when they were updated in TMS. The new paramters were then sent to

the 170 test rack through rmdc_comm.

2) Using test_rmdc_comm, we verified that the VAX sent the date/time message

properly to the 170 upon startup and that an acknowledgment was returned by the

170.

3) Using test_rmdc_comm, we verified that the reset command was properly sent to

the VAX from the 170 and that the 170 responded with an acknowledgment.

4) Using test_rmdc_comm, we verified that the data poll was properly sent from the

VAX to the 170 upon startup and that the VAX successfully received the data

returned from the 170. These returned data were displayed correctly in the TMS

console.

5) Using test_rmdc_comm, we verified that the VAX properly sent the error request

and that in turn, the VAX successfully received the error data returned from the

170.

6) We tested the start and stop metering command from the operator console and

verified the 170’s proper execution using CCTV.

Opc_comm

We verified proper communication between the operator consoles and the VAX

through the following tests:

83

1) We verified that all parameters are viewable and updateable from the operator

console. The new values were downloaded to the 170 and continued to be

displayed correctly on the operator console when it refreshed the screen.

2) Parameter changes made from the operator console properly appeared in the

rmdb_journal.fil.

3) A pass report was sent out to NOAA and to the WSDOT Web page. It reached

NOAA and the Web page successfully.

4) The ability for the operators to send messages to each other via TMS was tested. A

test message was sent to the four operators currently logged on, and the window

displaying the message appeared correctly on their consoles.

5) We tested the operator incident messaging and verified that it was correctly

displayed on WSDOT Web page.

Vms_comm

We tested the commands sent to the variable message signs (VMS) from the

operator console.

1) We sent out the VMS message “Traffic Conditions (206) 368-4499” to sign VMS-

887. We verified the display with a CCTV camera.

2) We then blanked the sign and verified it with the CCTV.

3 We switched the message to “Ride Share Info” and verified it with the CCTV

camera.

4) We successfully created a new sign cluster.

5) We created a new message within this cluster. The changes were journaled

correctly in vms_journal.fil.

Noaa_monitor

Two tests were completed to verify proper communications between the VAX and

NOAA:

84

1) We tested that a pass report reached NOAA successfully.

2) We tested that the NOAA reports reached us successfully.

Cctv

We checked all camera operations.

1) We assigned the monitor to the camera on I-405 at NE 116th St, swiveled it around,

zoomed in and out, and focused without any problems. Then we switched the

display to the camera at I-90 at 4th Ave southeast bound.

2) We viewed up-to-date camera images on WSDOT’s Web page.

Mon_event_log

We monitored the events as we ran tms_startup in the directories with the old and

new executables. There were no discrepancies. Although there were some minor errors,

these errors had pre-existed and were identical between the two versions of software.

Log Files

All output files of the new code were compared to those produced by the old code.

The output files consist of the operator log file, the tms event log file, the rmdc comm log

file, the opc comm log file, the vms comm log file, the tms crash log, the FMDB daily

primary files, the FMDB snapshot primary files, and the database journal files.

1) The operator log was created and written successfully. No errors were reported.

All operations were logged correctly into the file OPERATOR_011999.LOG;2 on

19-JAN-1999 12:25:26.60.

2) The tms event log file, TMS_EVENT_990119.LOG;2, was created successfully on

19-JAN-1999 12:24:17.84. No errors appear in the event log. Normal operations

are logged correctly. The log files created by the old and new executables were

compared. The only difference was that upi_xmit had a busy phone line in the

event log file of the old software. The VAX output is shown below:

85

TMS Event File Created - 01/19/1999 12:24:17.77
--
12:24:18.09 09008013 EVENTLOG Startup:ersion 0.25 - 04/29/94
12:24:21.05 00000000 MONEVTLG Start MON_EVENT_LOG Echo
12:24:24.80 08230003 UPI_XMIT Version 0.19 - 04/29/94
12:24:24.88 00000000 UPI_XMIT Warning-UPI Port DISABLEd, set to ENABLE
12:24:25.04 0822800b NOAA_MON Version 0.20 - 04/29/94
12:24:25.38 08220003 NOAA_MON Warning-NOAA Port DISABLEd, set to ENABLE
12:24:25.38 08228013 NOAA_MON Startup Complete
12:24:25.40 0808800b BLD_RTDB Version 0.19 - 04/29/94
12:24:25.42 00000000 BLD_RTDB Existing global section - Delete it
12:24:25.93 00000000 BLD_RTDB Global Section Created-size=3284980
12:24:30.14 0809800b BLD_FMDB Version 0.28 - 04/29/94
12:24:30.18 00000000 BLD_FMDB Existing global section - Delete it
12:24:31.13 00000000 BLD_FMDB Global Section Created-size=5667673
12:24:52.65 08230003 UPI_XMIT Startup Complete
12:25:20.53 080e800b DUMYDATA Version 0.30 - 04/29/94
12:25:20.64 080e8013 DUMYDATA Startup Complete
12:25:20.82 080f800b STN_AGGR Version 0.22 - 04/29/94
12:25:21.11 0810800b INC_DET Version 0.29 - 04/29/94
12:25:21.27 08108013 INC_DET Startup Complete - table_size = 18
12:25:21.38 0811800b BTL_NECK Version 0.24 - 04/29/94
12:25:21.56 08118013 BTL_NECK Startup Complete-table_size=128
12:25:22.02 080f8013 STN_AGGR Startup Complete-table_size=10006
12:25:22.26 0824800b FUZZY_MR Version 0.25 - 10/23/98
12:25:22.33 08248013 FUZZY_MR Startup Complete-table_size=18
12:25:22.51 0820800b FMDBAGGR Version 0.31 - 12/23/96
12:25:22.62 08208013 FMDBAGGR Startup Complete
12:25:22.78 0821800b FMDBARCH Version 0.22 - 04/29/94
12:25:23.07 0900800b RT_SKEL ersion 0.31 - 06/03/98
12:25:23.94 08218013 FMDBARCH Startup Complete
12:30:00.00 00000000 EVENTLOG 10 Minute Time Stamp: Date = 01/19/1999
12:31:01.77 00000000 MONEVTLG Terminate MON_EVENT_LOG Immediately
12:40:00.00 00000000 EVENTLOG 10 Minute Time Stamp: Date = 01/19/1999
12:50:00.00 00000000 EVENTLOG 10 Minute Time Stamp: Date = 01/19/1999
13:00:00.00 00000000 EVENTLOG 10 Minute Time Stamp: Date = 01/19/1999
13:08:09.51 00000000 MONEVTLG Start MON_EVENT_LOG Echo
13:10:00.09 00000000 EVENTLOG 10 Minute Time Stamp: Date = 01/19/1999
13:20:00.00 00000000 EVENTLOG 10 Minute Time Stamp: Date = 01/19/1999
13:30:00.00 00000000 EVENTLOG 10 Minute Time Stamp: Date = 01/19/1999
13:30:03.85 00000000 MONEVTLG Stop MON_EVENT_LOG Echo
13:40:00.00 00000000 EVENTLOG 10 Minute Time Stamp: Date = 01/19/1999
13:50:00.00 00000000 EVENTLOG 10 Minute Time Stamp: Date = 01/19/1999
13:58:06.83 00000000 SHUTDOWN TMS_SHUTDOWN Started
13:58:06.85 08230003 UPI_XMIT Terminating
13:58:06.85 00000000 NOAA_MON stop_noaa_port() called
13:58:06.85 08220003 NOAA_MON Terminating
13:58:13.00 00000000 RT_SKEL Polling Process Timeout
13:58:13.00 00000000 RT_SKEL MULTI_RMDC_COMM Failed to Complete
13:58:22.00 00000000 RT_SKEL Start TMS Shutdown Sequence
13:58:22.00 00000000 EVENTLOG SHUTDOWN Bit Set
13:58:22.03 080e8023 DUMYDATA Terminating
13:58:23.02 080f8023 STN_AGGR Terminating
13:58:23.02 08108023 INC_DET Terminating
13:58:23.04 08118023 BTL_NECK Terminating
13:58:23.27 08248023 FUZZY_MR Terminating
13:58:23.39 08208023 FMDBAGGR Terminating
13:58:23.43 00000000 RT_SKEL Terminating

86

13:58:24.02 08218023 FMDBARCH Writing Snapshot Files at Termination
13:58:24.69 08218023 FMDBARCH Writing Daily Files at Termination
13:58:39.85 08218023 FMDBARCH Terminating
13:58:39.88 00000000 EVENTLOG Terminating
--
TMS Event File Closed - 01/19/1999 13:58:39.88

3) The rmdc comm log file was successfully created and written:

RMDCCOMM_M.LOG;1218 on19-JAN-1999 12:25:25.09. In both the new and

old software, all units were set to comm active upon startup. Most of the ports

operated successfully. In the cases where a port had a problem, the same port had

the same problem when the system was restarted with the other code. For example,

the following error message occurred on the same ports in both log files:

13:46:52.00 0813013a ES-662R: No response to DATA_POLL
13:46:50.79 08130193 ES-662R: Possible Run-Away Port-cc=0000018c
13:01:24.30 0813023b ES-TR6R: Unit set to COMM_MARGINAL
12:26:05.04 0813022b ES-TR6R: Unit set to COMM_FAILURE
12:59:25.01 08130213 ES-TR5R: Unit set to COMM_ACTIVE
13:48:23.93 08130053 ES-156R: Data Checksum Error

In both instances, there was a higher than expected occurrence of the data checksum

error. We believe that this frequency of occurrence was caused by a bug that still

exists in the 170 chip. Although the 170 returns the correct data, the checksum error

is calculated before the final data are written, causing the checksum error. Because

this error occurred frequently on both the TMS_PRIMAL and TMS_RUN

executables, we do not believe this possible bug is related to the new code.

4) The opc_comm log file OPC_COMM_M.LOG;341 19-JAN-1999 12:25:26.07

was created and written successfully. Several errors occurred in this log.

However, all of the same errors also appeared in the opc_comm log created by the

old executables. Thus, we do not expect any of these errors to be caused by the

new code. Below is a sampling of the events that occurred:

87

OPC_COMM Log File Created - 01/19/1999 12:25:25.34
--
12:25:26.82 00000000 OPC_COMM Version 0.160 - 03/03/97
12:25:29.33 08150003 WSP_BLV: In assign_initial_camera()-Camera name [CCTVMS1] not found
12:25:29.61 00000000 OPC_COMM start_next_tms_sched():First Entry < Current Time
12:25:29.72 00000000 OPC_COMM Startup Complete
12:25:46.11 00000000 TMS_P2R: User NOT Logged In-Cmd=52
12:25:48.67 08120003 TMS_P2R: Port/Unit set to COMM_ACTIVE
12:25:56.44 08120003 O_TXF0: No Stn for ES-116R 5 Pike St-REV 2 for handle 8001
12:25:57.89 00000000 TMS_P2R: Invalid command in TxDoneRx=4e
12:25:58.94 00000000 INTRNET: Timeout - Device did not respond
12:25:58.94 08120003 INTRNET: Buffer queued for re-transmission
12:26:28.64 00000000 TMS_A_L: User NOT Logged In-Cmd=52
12:30:32.43 08120003 TMS_P2R: Error status from Driver (TxDone)-cc=0000022c
12:30:32.43 08128003 TMS_P2R: Error from SYS$QIO(SendTx)-cc=000002c4
12:30:32.43 08120003 TMS_P2R: Fatal Driver Error-cc=000002c4
12:30:32.68 00000000 TMS_P2R: Unexpected ACK received - Ignored
12:34:51.95 08120003 O_TXE0: In process_loginout()-SlaveConsole not found
12:43:42.53 08120003 MS_D6 : RTDB Name(s) for handle 0005 not found
12:47:20.03 08150003 MS_D6 : In switch_monitor_to_camera()-Invalid Camera Unit No=0
12:52:37.65 08120003 TMS_P2R: VMSDB Element V{VMS-877}*ROAD&LOCATION for
handle 7100 not found
13:55:30.52 081f0163 O_TXB3: Port Inactive - Status set to ENABLE
13:57:03.85 00000000 MB_TNL : Timeout - Device did not respond
13:57:03.85 08120003 MB_TNL : Port/Unit set to COMM_MARGINAL due to Hard Error
13:57:03.85 08120003 MB_TNL : Error limit exceeded-TxWaitRx comm aborted

5) The vms comm log file was created VMS_COMM_M.LOG;205 on 19-JAN-1999

12:25:25.40. All of the messages in this file were similar between the old and new

software.

6) There were no discrepancies in the tms crash log between the old and new

software. The output is below:

12:25:28.79 OPC_COMM:log_comm_event():Invalid mpu_no-cc=10000023
12:25:29.03 OPC_COMM:Warning-Video Switch Port DISABLEd, set to ENABLE-
cc=100000
23
12:25:29.72 OPC_COMM:log_comm_bfr():Invalid unit_no-cc=0000010b

7) The fmdb daily primary file was created successfully, 19990121.DAT;3 on 21-

JAN-1999 14:31:16.55.

8) The FMDB snapshot primary files were successfully created every 5 minutes

during operation of the new executables.

9) We verified that all database journal files were created and written successfully,

including rmdb_journal.fil, vmsdb_journal.fil, scheddb_journal.fil, oprtvdb_

88

journal.fil, gbldb_journal.fil, and cctvdb_journal.fil. The rmdb_journal.fil

showed the parameters that we edited from the operator console. The

vmsdb_journal.fil showed the new sign cluster that we created and the new test

message that we added. It recorded our deletion of the new test cluster as well.

Incident Detect

We built the following incident detect equation:

ES-TR8R:MMN_Inc = ES-TR8R:MMN_Stn & ES-TD1D:_MN_Stn

We decreased the downstream occupancy to 10.5% using dummy data, and increased the

upstream occupancy to 34.8% using the test rack. The incident was successfully detected.

When we decreased the occupancy back down to 21.7%, the incident cleared as expected.

Table 11 summarizes the events that occurred:

Table 11. Regression Test Results for Incident Detection

 TIME OCC for ES-TR8R :MMN_Stn INC STATE
16:11:00 21.0% NO INCIDENT
16:11:20 34.8% TENTATIVE INCIDENT DETECTED
16:11:40 71.8% INCIDENT OCCURRED
16:11:59 68.7% INCIDENT_CONTINUING
16:12:19 69.6% INCIDENT CONTINUING
.
.
.
16:31:19 21.7% NO INCIDENT

Tmsuw

We verified that TMSUW started up properly and that data were properly sent from

the VAX to the University of Washington (UW).

1) TMSUW started up with no errors in tmsuw.log. (In the new software, tmsuw

was added to tms_startup so that it would not need to be started independently.)

2) We examined the real-time 20-second data on the VAX using watch_rmdc, and we

compared them to those received by UW in real time for the following locations:

89

ES-726R on I-405, ES-900R on I-90, ES-159R on I-5, ES-516R on SR 520, ES-

623D on SR 167. All data matched.

TEST RESULTS OF NEW FUN CTIONALITY

The new functionality of RMDB, fuzzymeter, watch_fuzzymeter, and the 170 chip

was tested. The new processes were tested for Y2K compliancy. All tests were successful.

Build_rmdb

The following tests were performed to verify the new functionality of the RMDB. All

tests achieved the desire result.

1) Compiled new rmdb_tbl.c, rmdb_sub.c, rmdb.h without errors.

2) Compiled new tok_tabl.c without errors.

3) Compiled and linked new build_rmdb.c, rmdb.h, rmdb_func_prot.h, tok_tabl.c,

tap.h without errors.

4) Ran build_rmdb without yet using the new group names or new parameters.

Results were the same as before the software changes took place, as expected.

5) Added new group name [Fuzzymeter_Parameters] to rmdb_input.fil and verified

that new group name was written to the screen and rmdb_error.fil without errors.

(Rmdb_error.fil contains more than just error messages.)

6) Added new group name [Fuzzymeter_Equations] to rmdb_input.fil and verified

that new group name was written to the screen and rmdb_error.fil without errors.

7) Switched the order of the two new group names in rmdb_input.fil and verified that

the switched order did not cause errors.

8) Changed the group name to lower case to verify that token parser changed it to

upper case without any problem reading it.

9) Tested that the parser would catch the error of misspelled new group names. The

error was successfully written to the screen and to rmdb_error.fil.

90

10)Tested each parameter name given an acceptable value in rmdb_input.fil. Note:

parameter type USHORT1P requires an entry format of x.x% with a percent sign.

11)Tested the range limits for each parameter type. The parser correctly accepts values

>= minimum limit and values <= maximum limit. The parser does not accept

values outside of this range.

12)Added a fuzzy equation, which was successfully parsed and written to

fuzzy_meter.eqn file.

13)In fuzzy equation, changed "FM1" to "Btl" in cab/loop name. The parser correctly

produced the message, “Error — wrong equation type. Equation not written.”

14)In fuzzy equation, changed "FM1" to "FM4" in cab/loop name. The parser correctly

produced the message, “Error — Invalid char. Invalid cabinet/loop name.

Equation not written.”

15)In fuzzy equation, changed the cabinet name to be metered so that it does not match

the current group name. Fuzzymeter correctly produced the message, “Error —

cabinet name doesn't match current group name. Equation not written to file.”

16)In fuzzy equation, put an extra character in cab/loop name. The parser correctly

produced the message, “Error — Invalid char. Invalid cabinet/loop name. Equation

not written.”

17)In fuzzy equation, exceeded the allowable number of loops for each location type.

The parser correctly produced the message, “Error — Too many loops of a location

type. Equation not written to file.”

18)In fuzzy equation, deleted the number of samples for the advance queue in fuzzy

equation. The parser correctly produced the message, “Error — Number of

samples for advance queue not given. Equation not written to file.” The next

parameter following the faulty equation was parsed properly, as intended.

91

19)Deleted the second line of the fuzzy equation. The parser correctly produced the

proper error message. The equation was not written and the next parameter after

the equation was parsed properly.

20)Deleted the last line of the fuzzy equation. The parser produced the correct error

message. The equation was not written and the next parameter after the equation

was parsed properly, as intended.

21)In fuzzy equation, added a loop for the HOV bypass. (The HOV bypass loop is

optional in the equation format). The loop was processed properly and the equation

was written to file.

22)Changed the HOV bypass loop to a bad loop name by using "_Q" instead of "HP"

in the fuzzy equation. The parser correctly handled the error with the message,

“Error — Wrong loop type for HOV bypass. Equation is not written to file.”

23)Added a seventh loop location after the HOV bypass location in the fuzzy equation.

The correct error message was produced, “Error — Too many locations. Equation

not written.”

24)In fuzzy equation, removed the location queue, but still provided the HOV bypass

location. This test verified that the parser did not try to use the optional HOV

bypass location as a required location. The correct message was produced, “Error

— Missing delimiter, equation expected to continue. Equation not written.”

25)In fuzzy equation, removed the advance queue location, but still provided the HOV

bypass location. The correct error message was produced, “Error — Missing

delimiter, equation expected to continue. Equation not written.”

26)Changed `|' delimiter to `%' in fuzzy equation. The correct message was produced,

“Error — Delimiter of `|' or `&' expected. Equation not written.”

27)Changed `&' delimiter to `%' in fuzzy equation. The correct message was

produced, “Error — Delimiter of `|' or `&' expected. Equation not written.”

92

28)In fuzzy equation, moved `|' from end of line to beginning of next line. (Note: To

continue an equation on the next line, you must end the line in a delimiter.) The

correct message was produced, “Error — Missing delimiter. Equation not written.”

29)Deleted a delimiter between stations. The correct message was produced, “Error —

Missing delimiter. Equation expected to continue. Equation not written.”

30)Added extra spaces around delimiters to verify that this did not cause a problem.

The equation was correctly written without errors.

31)Added extra space around the number of samples inside of the parenthesis to verify

that this did not cause a problem. The equation was correctly written without

errors.

32)Added extra space before the parenthesis containing the number of samples. (Note:

Spaces are optional around the parenthesis.) The equation was correctly written

without errors.

33)Left out a tab on a continued line of fuzzy equation. (Note: Tabs are considered

white space and are optional.) The equation was correctly written without errors.

34)Continued a long equation line past 80 columns. The equation was correctly written

without errors.

To summarize, several equation error checks are done when build_rmdb.exe runs

to verify that the information given in rmdb_input.fil was correctly entered. If an error

occurs during the rebuild, an error message is written both to the screen and to

rmdb_error.fil (found in the executable directory). Table 12 lists the tests performed

during the building of RMDB and the error messages generated. Quite often, more than

one error message will be generated by a single error. Subsequent errors are common

because the equation parser discards the remainder of the line when it finds an error in that

equation. It searches for the beginning of the next equation and then produces errors when

that line (often a continuation of the bad equation) does not resemble the beginning of the

93

next equation. For this reason, first fix the first error listed (the real error) and then

determine whether any errors persist on the next rebuild. Depending on how creative the

user is with writing equations, it is possible that error messages other than the ones listed

will occur. Table 12 lists the most probable error messages generated for a given event.

(For further instructions on writing fuzzy equations, please see the training manual, Taylor

and Meldrum, 2000.)

Table 12. Equation Error Checks Performed in Build RMDB

EQUATION CHECK PERFORMED ERROR MESSAGE

Data Column type must be either a ramp meter or a data

collector

“Fuzzy meter Eqn valid only for RM or DC”

Characters 13 and 14 must be the string ‘FM’ “Wrong equation type — Must be FM for

Fuzzy Meter”

Metered cabinet must match the current cabinet name “Metered cabinet name doesn't match column

name or bad fuzzy eqn continues”

The cabinet name to be metered must use the correct format “Cabinet/loop name to meter is not valid in

fuzzy eqn”

All detector names must use complete 15 character format,

using the cabinet name, followed by a ‘:’, then either the

station or loop name (the parser does not assume current

cabinet as in Bottleneck equations)

“Cabinet/loop name not found in fuzzy eqn”

(The error check that this detector actually

exists is not performed until later during

tms_startup)

A detector name must be continuous within a line with no

spaces in between

“Cabinet/loop name not found in fuzzy eqn”

The controller inputs must be given in the order of local,

downstream, upstream, queue, advance queue, and HOV.

None—The parser might catch this error

through a subsequent check, but has no way

of knowing if the order is incorrect

The number of inputs (delimited by ‘|’) may not exceed six. “Too many |'s delimiting locations in fuzzy

eqn”

Up to five loops/stations each are allowed for the Local,

Queue and Advance Queue Inputs

“Too many loops of a station type in fuzzy

equation”

Only one loop/station each is allowed for the Upstream and

HOV sinput

“Too many loops of a station type in fuzzy

equation”

94

EQUATION CHECK PERFORMED ERROR MESSAGE

Up to 20 loops/stations are allowed for the Downstream

input

“Too many loops of a station type in fuzzy

equation”

‘|’ must be used to delimit different input types “Missing delimiter — expecting ' & ' or ' |

' to continue fuzzy eqn”

‘&’ must be used to delimit stations/loops of the same input

type

“Too many |'s delimiting locations in

fuzzy eqn”

An equation to be continued on the next line must end with a

delimiter ‘=’, ‘|’, or ‘&’

“Missing delimiter — expecting ' & ' or ' |

' to continue fuzzy eqn”

The HOV input is the only optional input. “Missing delimiter in fuzzy eqn —

expecting & or |” or “Queue or Advance

Queue loops are missing from fuzzy eqn”

The number of samples used to calculate the Queue and

Advance Queue inputs must be given in parenthesis following

detector name, with no spaces in between.

“Number of samples for queue or percent

adjustment for HOV not found in fuzzy

eqn”

If there is not an HOV input, the equation must end with the

Advance Queue input, followed by the number of samples

—not a delimiter

“Cabinet/loop name not found in fuzzy

eqn”

HOV loop must be a passage loop containing the string “HP’ “Loop for HOV Bypass in fuzzy eqn is not

of correct type”

The percentage of HOV bypass applied to a lane must be

specified in parantheses immediately after the HOV loop name

“Number of samples for queue or percent

adjustment for HOV not found in fuzzy

eqn”

The percentage of HOV bypass applied must be between 0 and

100

“Percent adjustment for HOV Bypasss is

out of 0—100 range in fuzzy eqn”

Do not put more than one equation per line. (This differs from

the other Traffic Analysis Programs.)

Either second equation will not be found or

several possible messages will be generated

if the second equation continues to the next

line

Fuzzymeter

The following tests were performed to verify the operation of fuzzymeter and

watch_fuzzymeter. All tests were completed successfully.

1) Rebuilt RMDB with fuzzymeter equations, error free.

95

2) The fuzzymeter parameters appeared in patch_rmdb and could be updated

successfully.

3) Tested that fuzzymeter obtained the correct values for the known inputs provided by

the 170 test rack.

4) Watch_rmdc showed that the 170 returned the correct fuzzymeter lane status and

implemented the correct rate.

5) When PermitFuzzymeter1 was changed to NO, the 170 stopped fuzzy metering, as

intended.

6) Fuzzymeter wrote to the event log file as expected.

7) Watch_fuzzymeter displayed the correct inputs, internal calculations, and outcomes

of fuzzymeter. The metering rates calculated by watch_fuzzymeter matched those

calculated by fuzzymeter and those subsequently returned from the 170.

8) When fuzzymeter was disabled, watch_fuzzymeter correctly displayed that

fuzzymeter was not enabled.

9) When fuzzymeter had insufficient data, watch_fuzzymeter correctly stated this

message.

10) When fuzzymeter was disabled, rmdc_comm sent out the old data poll as intended

(rather than the new data poll).

Table 13 lists the error checking that fuzzymeter performs upon start-up to verify

that the inputs to the controller were specified correctly. Further tests were performed to

verify that fuzzymeter detected these errors.

96

Table 13. Equation Error Checks Performed by Fuzzymeter Upon Start-up

EQUATION CHECK PERFORMED ERROR MESSAGE

The cabinet name must exist in RMDB “Eqn:Cabinet name not in RMDB –

skipped”

The cabinet station/loop name must exist in RMDB “Station:loop name not found”

The number of samples to calculate the queue inputs and the

percentage of HOV bypass must be less than 128 (1 byte

size)

"Number of samples for queue or percent

HOV adjustment is too large”

170

The following tests were performed to check for the correct operation of the new

170 logic in receiving the new 170 data poll:

1) The fuzzy metering rates were implemented on the enabled lanes whether bottleneck

was enabled or disabled for the cabinet. Bottleneck and fuzzymeter could

simultaneously meter different lanes within the same cabinet.

• If the fuzzy metering rate was below the minimum rate allowed for that cabinet,

the minimum metering rate was used.

• If the fuzzy metering rate was above the maximum rate allowed for that cabinet,

the maximum metering rate was used.

2) The bottleneck metering rate was calculated correctly when the bottleneck

adjustment was sent via the new data poll (which also contained the fuzzy metering

rates).

• When the calculated bottleneck metering rate was above the maximum rate

allowed, the maximum rate was implemented.

• When the bottleneck metering rate was below the minimum rate allowed, the

minimum rate was implemented.

97

• The bottleneck metering rate calculation was correct when the MultiLaneSplit

was set to 0%. The volume adjustment was done correctly.

• The bottleneck metering rate calculation was correct for both negative and

positive storage rates.

3) The local metering rate was calculated correctly when the new data poll was used.

(Fuzzy metering was enabled on at least one lane, and bottleneck was disabled for

the cabinet.)

• When the local mainline occupancy was less than the first local table occupancy,

the local metering rate was the maximum allowed rate.

• When the local mainline occupancy was between the first and second local table

occupancies, the local metering rate was interpolated correctly.

• When the local mainline occupancy was between the second and third local table

occupancies, the local metering rate was interpolated correctly.

• When the local mainline occupancy was between the third and fourth local table

occupancies, the local metering rate was interpolated correctly.

• When the local mainline occupancy was between the fourth and fifth local table

occupancies, the local metering rate was interpolated correctly.

• When the local mainline occupancy was greater than the fifth local table

occupancy, the local metering rate was the minimum allowed rate.

4) The control between the different ramp metering algorithms worked properly.

• The time-of-day (TOD) rate was implemented correctly when the new data poll

was used. (Fuzzy metering was enabled but the ControlSwitch was set to

“TOD.”) When the ControlSwitch was set to “TOD,” the 170 did not

98

implement fuzzy metering or bottleneck metering. Instead, it chose the

minimum between the local metering rate and TOD rate.

• When the ControlSwitch was set to “Central” and the bottleneck adjustment was

sent via the new data poll (fuzzy metering was enabled on one or more lanes),

the 170 chose the minimum between the local metering rate and the bottleneck

metering rate. (The bottleneck rate was only applied for the lanes that did not

use fuzzy metering.)

• When bottleneck was enabled for the cabinet and fuzzy metering was enabled

for a lane within that cabinet, fuzzy metering overrode bottleneck for that lane.

(This control hierarchy was necessary because bottleneck rates are cabinet

specific, and fuzzy metering rates are lane specific.)

• When the CentralSwitch was set to “Central” and fuzzy metering was enabled,

the fuzzy metering rate was implemented regardless of the local metering rate

and TOD rates.

CPU Requirements

CPU measurements for the TAPS were aggragated over two hours to compare their

relative computational intensity on the VAX (Table 14). Given approximately the same

number of cabinets for which to calculate metering rates, fuzzymeter had CPU

requirements similar to those of bottleneck. The CPU requirements of fuzzymeter were

reasonable in comparison to the other TAPS. The 5-minute CPU usages of these processes

were also examined. The CPU requirements were nearly constant for all processes for the

two hours from 9:20 AM to 11:20 AM on March 31, 1999.

99

Table 14. CPU Requirements of Processes Over a 2 Hour Period

PID STATE PRIORITY NAME DIOCNT FAULTS CPU TIME

00000217 HIB 4 SMTP_SYMBIONT 2/108 6 499 00:00:00.5

00003A4A HIB 5 MULTINET_SERVER 57/706 23357 1211 00:00:58.9

00010E6B CEF 5 EDIT_20_SEC 74/408 140 338 00:03:12.3

0001130C LEF 7 _NTY4: 100/476 5129 11536 00:01:22.4

0000F90F LEF 2 EVENT_LOGGER 112/554 486 439 00:00:03.5

00010710 CEF 2 UPI_XMIT 90/406 1447 266 00:00:01.3

00010711 CEF 5 NOAA_MONITOR 100/490 194 374 00:01:47.7

00010716 CEF 1 DUMYDATA 385/758 4 645 00:02:12.9

00010717 CEF 0 STN_AGGR 6671/7003 1 7159 00:02:15.2

0000FB18 CEF 1 INC_DETECT 75/462 2 351 00:00:00.9

0000FB19 CEF 1 BOTTLENECK 1770/2066 11 2218 00:00:14.4

0000FB1A CEF 1 FUZZYMETER 1535/1883 4 1948 00:01:07.0

0000EF1B CEF 0 FMDB_AGGR 16749/171 2 17418 00:06:20.8

0001071C CEF 0 FMDB_ARCHIVER 10927/118 3164 13065 00:00:25.3

100

BUG REPORT

During the process of testing, one bug was found. This bug is the result of an

incompatibility between the new file ntcip.h and the watch_fuzzymeter software. Ntcip.h

is one of the new files created by a separate project to implement NTCIP standard

communications between TMS and the variable message signs (VMS). This file was

implemented onto the real-time system in January 1999 (just after The Fuzzy Logic Ramp

Metering Algorithm was implemented). The bug resides in a known line of ntcip.h that

allocates memory. When the object library is compiled with this line of ntcip.h,

watch_fuzzymeter cannot retrieve good data, although fuzzymeter works without any

problems. As far as we know, no other processes except watch_fuzzymeter are affected by

the NTCIP bug. When the object library is compiled without this particular line of ntcip.h,

watch_fuzzymeter works without any problem.

To get around this bug for the time being, watch_fuzzymeter links to a different

object library, which is identical to the object library used by all other processes except that

the one problematic line in ntcip.h is deleted. Although this version works fine for a short-

term solution, it is highly recommended that the NTCIP bug is fixed as soon as possible.

Fixing bugs in the NTCIP project is outside the scope of this project. Memory problems

such as these are the most dangerous type of bug. Although the consequences appear

benign for the present time, as the databases grow over time, locations for process memory

may move around. In the future, the NTCIP bug could overwrite different parts of

memory and damage more critical operations. Furthermore, if changes are made to the

object library before the NTCIP bug is fixed, be sure to update the same changes in

watch_fuzzymeter’s object library for proper configuration. The known details of this bug

have been reported to the TMS software manager at WSDOT, who is working on the

problem.

101

PERFORMANCE EVALUATION SOFTWARE

One of the difficulties of on-line testing was that the system-wide performance

measures that we desired were not readily available. Ideally, we wanted to know the total

distance traveled by all vehicles in the system, the total travel times of all vehicles in the

system, and ramp queue delay. Realistically, the scope of this project was limited to

performance measures that we could estimate through a combination of hardware and

software processing. In addition to mainline performance measures, we needed queue

performance measures to determine if there was system-wide benefit. (For further details

on which performance measures were used and why they were chosen, see the evaluation

report, Taylor and Meldrum, 2000). We evaluated several methods of obtaining and

processing data, and we chose the one best suited to our needs.

METHODS EXPLORED

We evaluated several possibilities for gathering 5-minute data and performance

measures for our study sites, and we decided which of these would best suit our needs to

analyze the performance of the new ramp metering algorithm:

1) Trafficview — This was a sidewalk.com Web page that used WSDOT’s 20-

second data to make travel time estimates. The estimates were based on current (not

predicted) conditions. Trafficview emailed travel times from the study sites as frequently

as we wanted. Although this was a very user friendly tool, the difficulty was in the

availability and reproducibility of this performance measure. We did not know if

TrafficView would be in operation when we needed it. (In fact, it was not, so it is

fortunate that we did not choose it.) We also did not know the exact methods used to

calculate the travel times. And we did not know if we could apply the same method in

102

subsequent studies as a standard of comparison. Despite the convenience, we chose not to

use it for these reasons.

2) CDR — This software retrieved archived 5-minute data, which was

automatically sent from the central VAX to another server every night. From this data

server, the 5-minute archived data could easily be retrieved from anywhere on the network.

We found that CDR was very useful. Using CDR, we created data files of requested data

that we could import directly into Excel. Using CDR data, we created throughput

histograms of our study sites in Excel. (See test results in evaluation report, Taylor and

Meldrum, 2000). We also used CDR to estimate the control parameters at previously

unmetered ramps. (See system-wide implementation of the evaluation report.) Primarily,

we used CDR to preprocess the data for CD Analyst.

3) CD Analyst — We decided to use the CD Analyst software produced by the

FLOW project (Ishimaru and Hallenbeck, 1999) because it will be the standard

performance evaluation software for our region and because it provides a uniform method

for future comparisons. We used FLOW software to produce occupancy contour maps of

the study sites, frequency of breakdown plots, and travel time measures. The occupancy

contour maps were very useful in evaluating congestion on the mainline. (See test results

in evaluation report, Taylor and Meldrum, 2000). The frequency of breakdown plots were

very valuable for determining which stations to use as downstream inputs for a given ramp.

(See downstream input section of the training manual, Taylor and Meldrum, 2000). We

found that the travel times were not accurate enough to be of use because of the way in

which the speed was estimated and the fact that ramp delay was not included. (See

discussion of performance measures in the evaluation report).

103

GETTING 20-SECOND DATA

While CDR and CD Analyst software are suitable for mainline performance

measures, they do not provide measures of ramp metering queue performance. To evaluate

ramp queues, ramp delays, and metering sensitivity to mainline conditions, analysis of the

queue was necessary. In particular, we thought it was necessary to use 20-second data

because previous attempts by Ishimaru and Hallenbeck found that the 5-minute data were

not adequate for queue analysis, and it was believed that 20-second analysis would be

accurate enough for queue analysis. For this reason, we continued to explore ways to

retrieve and analyze 20-second data for queue analysis to be used in conjunction with the

mainline performance measures:

1) TDAD — This project was a 20-second database project at the University of

Washington that archived 20-second data and provided files of queried data.

Unfortunately, we found that 9 months of data had been lost, and the database was not

available to us for use. There were some difficulties accessing the data behind firewalls,

and we had no way of storing the results of our query into a file because of the way that the

Java language handles security. For these reasons, we could not use TDAD.

2) SDD — This was a UW project that provided 20-second data to clients in

realtime. We installed the software to retrieve these data. Although this server worked,

much more programming would have been necessary to parse and process the incoming

data into a usable form.

3) VDR — This was a TMS utility that created 5-minute data files directly from the

VAX as specified by the user. We explored the possibility of modifying this utility to

create 20-second data files as well. It turned out that the modifications necessary for VDR

to create 20-second data files would be too involved for this project.

4) Get_20_sec_data utility on VAX — This was a VAX utility that produced 20-

second data files for the times and loop detectors specified in an input file. However, the

104

companion software to convert the resulting data files to ASCII on the PC had been lost by

WSDOT years ago. We looked at the code and discovered that it was easy to modify the

code to write ASCII files (see edit_20_sec.c section under NEW CODE). In comparison to

the other methods of gathering and processing 20-sec data, this one was the easiest of the

four methods discussed here, so we decided to use it. We made the necessary changes to

create ASCII files, wrote a makefile to compile the software in a bubble environment, and

installed the code on the VAX. Most significantly, we wrote code that automates the

process of gathering 20-sec data. Formerly, it was necessary to modify the input file every

day with the proper collection date, times, and stations. The new code that we wrote,

edit_20_sec, checks the date and time so that it automatically collects the desired loops and

stations for morning metering between 6 am and 9:30 am on weekdays. For the afternoon

metering period, it collects the desired loops and stations between 2:30 and 6 p.m. on

weekdays. This new software ran continuously for the several months during which we

evaluated our study sites, and these 20-second data files were successfully used to

evaluation the queue with respect to ramp metering performance.

PROCESSING 20-SECOND DATA

We wrote software to analyze 20-second data for evaluating ramp metering

performance. The software that processes 20-second data and provides performance

measures must run on Matlab. While we wrote this code for our purposes of evaluating

ramp metering performance, other researchers and TSMC personnel expressed an interest

in this type of software tool. For this reason, we have written the code in a modular

manner that is easy to modify, and we have made the code available to anyone at WSDOT

who needs it. (Look on the TSMC directory of the Quartz server for the 20_sec_analysis

directory at the Northwest District).

The files ending in ‘.m’ are run from the Matlab command window by typing the

file name. The files are either script files or functions. Script files read the data and run the

commands in the m-file using the variables in the workspace. Functions require certain

105

inputs. You can get help on the command line for any of these files by typing help

filename. All files can be run stand-alone or run from the main program, queue, which is

menu driven. To run these functions stand alone, you must have any necessary variables

in the workspace. You can get the variables into the workspace either by parsing a file

using queue or by loading variables from a file of type *.mat. To see the defined

variables, type who . To see the value of any variable, type the variable name. If you want

to save the variables in your workspace at any time (to save you from reparsing the original

data file), type save ES-xxxx.mat. When you want to restore the data, type load ES-

xxxx.mat.

The capabilities of the new software are summarized, followed by the module

names related to those functions.

1) Open an ASCII file that was created by the VAX utility get_20_sec and parse the

20-second data file to get the volumes, occupancies, and data validity flags for

entering and exiting ramp data: cab_sort.m, cablistinput.m, queue.m,

parse_data_file.m, queue_params.m, parse_main.m, and

main_params.m.

2) Patch bad data using good adjacent data, if possible, and create a bar graph of data

quality: data_patch*.m and data_quality.m.

3) Simulate ramp metering for each 20-second cycle: queue.m, get_mr,

meter_params.m, local_meter.m, interpolate.m, local_params.m,

queue_override_occ.m, and queue_override_vol.

4) Estimate and plot the storage rates for each 20-second cycle (using either real

passage volume or simulated metering rates): queue.m and calc_queue*.m.

5) Estimate and plot the ramp queue in vehicles as the accumulative sum of the storage

rate on the ramp: queue.m and calc_queue*.m.

106

6) Plot the ramp demand and the ramp passage versus time for general purpose lanes,

HOV lanes, or the sum of general purpose and HOV lanes: queue.m and

calc_queue*.m.

7) Calculate and plot the queue performance measures: plot_queue_occ*lane.m

8) Tune and graph the fuzzy classes to determine the appropriate design: trap*.m

and default_tuned*.m.

Psuedo code is given for some of these files.

Cab_sort.m — Reads the aggregate data files and creates the new data files for

each cabinet. Although it is not necessary to run the cab_sort.m preprocessor, it will

speed up the queue analysis if you're examining multiple on-ramps. This process may take

a while. If you have a big input file, you may want to run this over night.

• Opens the ASCII file created by the VAX utility get_20_sec.

• Opens and reads the file, cablistinput.m. Cablistinput.m must contain a list of

cabinets for which data files will be created by cab_sort.m. Modify this file to

include the cabinets that you want! This file must use the specified format:

cab_list = {'ES-xxxx' 'ES-xxxx',...};

• Sorts file by cabinet name.

• Creates a new 20-second data file for each specified cabinet name.

Queue.m — the main menu driven interface. Be sure to review the loop names in

queue_params.m before running queue.m! Be sure to review and if necessary, update

the equations in calc_queue*.m!

• Opens the ASCII file created by the VAX utility get_20_sec.

107

• If the user chooses to parse a data file (as opposed to loading the variables into the

workspace from a *.mat file), parse_data_file is called.

Parses data file to get the volumes, occupancies, and data validity flags for

entering and exiting ramp data

• If the user chooses to patch any bad data, the appropriate data_patch*.m is

called.

Estimates bad data using good adjacent data if possible.

Creates bar graph of data quality with percentage of good+fixed.

• If the user chooses to ramp meter the data, get_mr simulates ramp metering for

each 20-sec cycle. (You would want to use this feature on unmetered data for

ramps that have not previously been metered in order to estimate the queue.

Get_mr actually writes the metering rate into the passage rate, so do not use this

function if you want to analyze the queue performance of metered data.)

• If the user chooses to calculate the queue, the appropriate calc_queue*.m is

called.

Estimates the storage rate for each 20-second cycle.

Estimates the queue length in vehicles as an accumulative sum of the storage rate.

Estimates the queue delay using the current metering rate .

Plots queue length and queue delay during metering.

Queue_params.m is an m-file used by queue.m to specify the loop names,

cabinet name, and directory name. Review this file and update it before running

queue.m. Enter the cabinet name for the ramp queue analysis. If you do not run the

preprocessor called cab_sort, you'll need to rename your data file to match the cabinet

name to be analyzed with the form “ES-xxxx.log.” If you need the mainline local station

108

and it has a different cabinet name than the ramp loops, then you must use the original data

file. (The cab_sort preprocessor won't work for you.) Revise loop names as needed.

Do not delete the ones you do not need, but make sure that the ones you do need are

correct! If you want to analyze lane 3 and it is not adjacent to lanes 1 and 2, set

gp1_passage to '_MS_P_3,' and set gp1_demand to '_MS_Q_3.' Do likewise for the

HOV passage and demand. You must rerun queue.m for each set of adjacent ramps. In

other words, run queue.m first for the adjacent metered lanes 1 and 2. Then run

queue.m again for independently metered lane 3. If lane 2 is not adjacent to lane 1, the

analysis for lanes 1 and 2 must be done independently. The code does not currently

support lane 3 if it is metered adjacent to lanes 1 and 2. Be sure to look at actual loop

locations to determine whether to use the queue loops, intermediate queue loops, or

advance queue loops for the best representation of the demand. (In other words, which

queue loop is adjacent to the HOV demand? Which queue loop encompasses the end of the

queue? Do you have the unusual case where the queue loop includes the HOV volumes

before it splits off, as in geometry case #5 of the queue.m menu?) Be sure to examine the

equations in calc_queue*.m to see if these are used appropriately. If an error occurs

during calc_queue*.m, you have probably not specified your loop names correctly.

Compare them to the actual loops in the data file. You also may have specified the wrong

geometry.

Parse_data_file.m — Parses the raw data file to extract the desired data.

Queue_param.m defines what cabinet/loop/stations names to extract.

Data_patch*.m — Patches any bad data and graphs them. These modules call

the function data_quality.m to estimate the bad data by interpolating with good data that

are adjacent in time. Bar graphs show old good data plus new good data quality. They are

called by queue.m or can run standalone with the variables in workspace. If a module is

109

run more than once on the same raw data, it will patch the patched data. (It may continue to

increase the number of interpolated data points, but the reliability of repatched data

decreases with each run of data patch.) Run only one of the following modules, depending

on your ramp metering geometry. These module names correspond to how many lanes are

metered side-by-side where crossover can occur, not necessarily to the lane numbers:

1) Data_patch_1lane.m

2) Data_patch_1lane_hov.m

3) Data_patch_2lanes.m

4) Data_patch_2lanes_hov.m

5) Data_patch_1lane_hov_inc.m

Data_quality.m — Function called from data_patch*.m to patch bad data. It

returns the percentage of good data samples, the percentage of fixed data samples, and loop

structure with fixed data. It tries to interpolate the bad data with timewise adjacent data.

Get_mr — a function called from queue.m that returns the metering rate. It uses

the function protocol: passage = get_mr (main_data, queue_data, adv_queue_data,

hov_flag, hov_data, lane_no, time_index). Get_mr calls meter_params.m,

local_meter.m, and queue_override.m. It calculates metering rates for all time

intervals given the mainline occupancy, queue occupancy, advance queue occupancy, an

HOV flag to tell if there is a bypass, the HOV bypass volume, the lane number to meter,

and the number of intervals. Get_mr must be called once for each metered lane. The

results are stored in the passage loop variable, overwriting the real passage loop volume

(unless you call it with a different variable name for the result).

Meter_params.m — a script file that contains the parameters used in the Local

Metering Algorithm. Be sure to udpate these parameters before running

get_mr.m! This file is called by local_meter.m and by queue_override.m.

110

Rows (separated by colons) correspond to the lanes 1, 2, and 3. Queue_occ

contains the queue occupancies at which to start and end the queue override for each

lane. Queue_timer and adv_q_timer contain the duration in minutes that the

occupancy exceeds the start queue occupancy before adding the queue_adjust 1 and

queue_adjust 2 to the metering rate. Queue adjustment, queue override, table_rate,

max_rate, and min_rate are all in vehicles/minute.

 Local_meter — a function that returns a local metering rate given a mainline

occupancy and the metered lane number. It is called from get_mr.m. It calls

local_params.m and interpolate.m. Be sure that meter_params.m contains

the correct parameters.

 Queue_override — Given the queue occupancy, advance queue occupancy, the

lane number to meter, and the previous override state, this function determines the

new override state and calculates metering adjustment. It is called from get_mr and

calls meter_params.m.

Calc_queue*.m — Calculates the storage rate and the total vehicles in the queue

for each 20-second cycle. It plots the storage rate and the vehicles in the queue for each

lane versus time. It also plots the total storage rate and the queue for the metered lane(s),

taking into account any weaving in and out of the HOV bypass lane. Update these

equations as they apply to each ramp! Check the queue_params.m input file to review the

loop names! If you have run a metering simulator, the passage volume will be the

calculated metering rates rather than the actual passage volume. If you want to save your

data for this cabinet without reparsing, type "save ES-xxxx.mat". When you want to

restore the data, type "load ES-xxxx.mat". Then type calc_queue*.m to replot. Run only

one of these modules, depending on your ramp geometry. The following module names

111

correspond to how many lanes are metered side-by-side where crossover can occur, not

necessarily to the lane numbers:

1) Calc_queue_1lane.m

2) Calc_queue_1lane_hov.m

3) Calc_queue_2lanes.m

4) Calc_queue_2lanes_hov.m

5) Calc_queue_1lane_hov_inc.m

112

TRANSFERABILITY

Even before publication of the test results, we received many requests regarding the

applicability of this algorithm to other regions. This code is customized for WSDOT’s

system – it is not “plug and play” for new systems. Successful implementation requires

knowledge of the site specifics, with controller inputs determined as described in the

training manual (Taylor and Meldrum, 2000). The concepts behind this algorithm are

certainly transferable, but the algorithm may need modification depending on detector

types, detector placement, sampling frequency, and control objectives. The fuzzy classes

must be determined with respect to the detector data characteristics and control objectives.

The control objectives are embedded into the rule base. For WSDOT’s system, balancing

the queue rules with the mainline objectives is a necessary feature. For regions that do not

have such oversaturation, their control objectives may be different. Regions that will see

the most benefit from this type of logic are those that have ramp queue detection, the need

to balance mainline objectives with queue objectives, and oversaturation both on the

mainline and ramps. The more congested the facility, the greater the effect of an event.

Incidents occur with greater frequency and bigger consequences on highly congested

facilities. For this reason, adept incident handling is a key feature of the Fuzzy Logic

Ramp Metering Algorithm for Seattle. Likewise, other regions with oversaturation will

value the ability of this algorithm to handle a wide variety of conditions.

Although the controller code itself is relatively simple, the interface between the

system software, control algorithm, field devices, and user interface may need considerable

customizing. For instance, this implementation involved modifying 77,000 lines of C code

for the interface to WSDOT’s highly customized TMSC VAX system (not including the

TMS PC software), compared to 8000 lines of new C code (not including the performance

evaluation software). Of those lines of new code, only 8 percent of the new lines are for

the controller code itself. (The others are for the interface as well.) The fuzzy logic

113

controller itself consists of the following modules: calc_fuzzy_rate, fuzzify, rules,

and defuzzify . (For those interested in purchasing a non-exclusive license for new

source code created in this project, contact Deirdre Meldrum at the Electrical Engineering

Department of the University of Washington. The University of Washington owns the

code, and WSDOT owns a non-exclusive license to the code.)

114

RECOMMENDATIONS

Because this project involved implementing the Fuzzy Logic Ramp Metering

Algorithm system-wide, we also fully trained the freeway operations engineers on how to

use this system. After understanding how watch_fuzzymeter works, the freeway

operations group requested that the TMS operator console display similar data.

Implementing this request is not as simple as it may appear. Fuzzymeter does not store all

of the internal calculations displayed by watch_fuzzymeter. Watch_fuzzymeter only stores

the internal calculations for the chosen ramp. If the operators wanted to access these data,

it would be necessary to modify the TSMC VAX software to store them in a global

database. Rather than clutter up the RMDB with these data, it would be better to store the

data in new fuzzy database. However, the operators do not need this information within

the TMS PC software because they can easily access it through vt320 (a VAX terminal

emulator), which has been installed on all of the operator PCs. They have been instructed

on how to access watch_fuzzymeter through vt320. It is recommended that the operators

become more comfortable logging directly on to the VAX through vt320 to access this

information, because modifying TSMC VAX software to send these data to the TMS PC

software is not cost effective for the marginal convenience it would provide.

We recommend the integration procedure that we used in this project. By doing

preliminary testing on a spare microVAX that duplicated the real environment, we were

able to thoroughly test the code functionality without impacting operations. The bubble

environment (described in the integration procedure) was a useful intermediate step

between off-line testing and fully integrated on-line testing. With this approach, we were

able to avoid any downtime or bugs caused by the on-line implementation of the Fuzzy

Logic Ramp Metering Algorithm.

The time and funds required for software development are typically greatly

underestimated. For this project, over 90 percent of the budget was spent on software,

115

while only 10 percent of the budget was needed for design, hardware, implementation, and

evaluation. Considering this statistic, many projects may benefit by hiring experienced

programmers. Despite the high cost of experienced programmers, they should be able to

get the job done faster, saving money on the overall project. The software interface and

integration were particularly time-consuming. Of the 85,000 lines of new or modified C

code for this implementation, less than 1% of those were for the controller code itself.

When dealing with software integration and testing, particularly for a complex system that

does not permit downtime, allow ample funds to develop, test, integrate, and evaluate

software in a quality manner. For instance, the Bottleneck Algorithm never worked

properly for years after its implementation and was only recently deployed successfully

when its 170 code was debugged through this project. Likewise, we strongly recommend

that WSDOT fixes the NTCIP bug from the VMS project, or consequences could be severe

(see Bug Report). With high turnover rates in employees, documentation is important for

the long-term success of software applications (see Lessons Learned in Piotrowicz and J.

Robinson, 1995). In a nutshell, be sure that budgets for implementation projects include

ample funds for adequate software testing and documentation as part of the contract.

For successful deployment, the importance of communication cannot be overrated.

This implementation required extensive coordination among programmers, system

administrators, freeway operations engineers, software maintenance persons, and other

researchers. When communication between software engineers did not take place on a daily

basis, there were problems with shared resources, incompatible integration schedules for

different projects, and software configuration issues. With frequent feedback from the

freeway operations and software engineers, the quality of the design was improved.

Testing had to be scheduled carefully to avoid affecting other projects and events.

Software status needed to be communicated to hardware personnel to prevent

incompatibilities with field devices. Correspondence with commuters at the study sites

allowed us to fine-tune the metering performance. Progress and results needed to be

116

communicated to managers to build support for the project. Although it may seem

excessive to send out daily or weekly emails regarding the project status, schedule, and

anticipated needs, this was found to be necessary to coordinate activities among all

individuals who were affected or who could affect the project.

At the onset of this project, there was a lack of software support that made this

implementation more time-consuming. WSDOT is now heading in the right direction

regarding software infrastructure. It now has a knowledgeable system administrator for the

TSMC VAX. It has greater in-house knowledge of how to make modifications to the

TSMC VAX code, PC code, and 170 microprocessors. In-house knowledge is very

helpful when fixing bugs, making improvements, or expanding the system. WSDOT has

improved its file maintenance, including backups, security, makefiles, and code

management software. WSDOT should continue to invest in continuous improvements to

the software infrastructure and software personnel. The benefits of proper software

infrastructure include improved operations and better risk management.

As databases grow, features are added, and data requests increase, the demand

increases on the central computer’s processor speed, communication speed, and memory

requirements. It is possible that at some point in the next couple years, an engineer

planning to add a demand on the VAX may discover that the VAX cannot support the

planned functionality. The VAX computer was obsolete from the day implementation was

finished. Because of this obsolescence, maintaining the VAX has been expensive. Because

migrating the TSMC VAX software to a new platform may require several years (remember

how many years it took to migrate to the VAX), we recommend that WSDOT begin the

planning stages for this event. The recommended study should include an estimate of how

long the VAX will be able to handle projected demands, the optimal software and hardware

architecture for the next system, and the recommended timeline for migration to the new

system. Factors that should be considered in determining the new system include how to

handle loads, hardware failures, test beds (such as multiple processors to share loads, take

117

over in case one fails or is devoted to testing), operating system, memory requirements,

processor speed, modularity, expandability, connectivity, data I/O speed and ports, data

archiving, automatic backups, automatic performance measures, standardization, and

security. The study should also estimate the cost of implementing and maintaining the

recommended system, as well as a time line for the migration. With foresight and

planning, WSDOT will confidently meet growing requirements.

118

ACKNOWLEDGMENTS

The contributions of many individuals at WSDOT were integral to the success of

this project. Mark Morse assisted with software design and testing, as well as modifying

the 170 logic. Paul Neel provided input on software design. Brian Dobbins tested the 170

microprocessors. Greg Leege and Don Vondran installed and field-tested the 170

microprocessors. Lanping Xu configured and maintained tempermental VAX machines.

Harriette Lilly contributed to the software integration procedure, software configuration,

and VAX software debugging. Michael Kastner and Michael Forbis debugged the TMS

PC software. Without this cohesive team of talented and knowledgeable individuals, this

project would not have been possible.

119

REFERENCES

J. Ishimaru and M. Hallenbeck, 1999. “Flow Evaluation Design,” Technical Report, WA-
RD 466.2.

G. Piotrowicz and J. Robinson, 1995. "Ramp Metering Status in North America," Office
of Traffic Operations, Federal Highway Administration, U. S. Department of
Transportation, Washington, D.C.

C. Taylor and D. Meldrum, 2000. “Algorithm Design, User Interface, and Optimization
Procedure for a Fuzzy Logic Ramp Metering Algorithm: A Training Manual for
Freeway Operations Engineers,” WA-RD Technical Report to be published,
Washington State Department of Transportation, National Technical Information
Service.

C. Taylor and D. Meldrum, 1997. “Documentation of TSMC Software that Interfaces with
Traffic Analysis Programs,” Final Technical Report. Washington State Department
of Transportation, National Technical Information Service, WA-RD 442.2.

C. Taylor and D. Meldrum, 2000. “Evaluation of a Fuzzy Logic Ramp Metering
Algorithm: A Comparative Study Among Three Ramp Metering Algorithms used in
the Greater Seattle Area,” WA-RD Technical Report to be published, Washington
State Department of Transportation, National Technical Information Service.

C. Taylor and D. Meldrum, 1995. “Simulation Testing of a Fuzzy Neural Ramp Metering
Algorithm,” Final Technical Report. Washington State Department of
Transportation, National Technical Information Service, WA-RD 395.1.

	Title Page
	Technical Title Page
	Table of Contents
	Introduction
	Software Design
	Modified Code
	Ramp Metering Database
	Real-Time Processes
	Communications Protocol
	170
	Utilities

	New Code
	Fuzzymeter.c
	Watch_fuzzymeter.co
	Fuzzymeter_sub.c
	Fuzzy.h
	Configuration Management
	Edit_20_sec.c

	Software Testing
	Integration Procedure
	Results of Regression Testing
	Rmdb
	Build_all_db
	Fmdb
	Rtdb
	Rmdc
	Rmdc_comm
	Opc_comm
	Vms_comm
	Noaa_monitor
	Cctv
	Mon_event_log
	Log Files
	Incident Detect
	TMSUW

	Test Results of New Functionality
	Build_rmdb
	Fuzzymeter
	170
	CPU Requirements

	Bug Report

	Performance Evaluation Software
	Methods Explored
	Getting 20-Second Data
	Processing 20-Second Data

	Transferability
	Recommendations
	Acknowledgments
	References

